
Logo (Berkeley) For Windows
Copyright (C) 1989 The Regents of the University of California. This Software may be copied
and distributed for educational, research, and not for profit purposes provided that this copyright
and statement are included in all such copies.

Copyright (C) 1993 George Mills. This Software may be copied and distributed for educational,
research, and not for profit purposes provided that this copyright and statement are included in
all such copies.

You may also be interested in Reading Computer Science Logo Style, Volume 1: Intermediate
Programming by Brian Harvey (MIT Press, 1985) for a tutorial on Logo programming with
emphasis on symbolic computation.

INTRODUCTION
COMMANDER
MENU
ENTERING AND LEAVING LOGO
TOKENIZATION
DATA STRUCTURE PRIMITIVES
COMMUNICATION
ARITHMETIC
LOGICAL OPERATIONS
GRAPHICS
WORKSPACE MANAGEMENT
CONTROL STRUCTURES
MACROS
ERROR PROCESSING
SPECIAL VARIABLES
GETTING HELP
DIRECTORIES
WINDOWS FUNCTIONS
BITMAP FUNCTIONS
MULTI MEDIA
ABBREVIATIONS

INTRODUCTION

Why LOGO
Where to Start

Why LOGO

This introduction does not do LOGO justice but it's a start. LOGO is a programming language,
pure and simple. There are basically two models that languages come in, compiled and
interpreted.

What is a compiled language?

In a compiled language the program is written and fed to a compiler. A compiler basically reads
all your code and converts it to an executable form that your computer understands.

What is a interpreted language?

An interpreted language does not get compiled. Instead, as each line is read the interpreter
executes it. This is a slow process to execute (on the fly) like this, but has the advantage of not
requiring a complete compile for each change. It's ideal in a learning environment.

So have guessed what type of language LOGO is yet?

Right it's an interpreted language, at least this LOGO is anyway.

LOGO also has another unique feature not offered in many other languages (none that I know
of). That is, what's called "Turtle Graphics".

What are turtle graphics?

Turtle graphics is a simple and powerful set of commands to manipulate a turtle.

Why do they call it a turtle?

The first version of LOGO used an electronic robot that resembled a turtle. In the case of a
video screen (like this LOGO) it's simply a cursor (or pointer) of where the turtle is.

What does the turtle do?

It draws, lines mostly, on the screen.

The gap that turtle graphics fills is what traditional languages do not. That is, it gives immediate
feedback. Immediate feedback makes it fun and easier to learn programming. The purpose of
LOGO is to teach young and old how to program. It was modeled after a very popular and
power language called LISP. It is as powerful as any other programming language.

Where to Start

Novices can start in LOGO without having to program at all by just learning how to command
the turtle. Learning turtle graphics will teach the user about geometry (and they won't even
know it). It's amazing how soon you can introduce the concept of programming once they grasp
the turtle concept. Lets look at some simple examples:

Draw a square using the turtle

FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90

That was easy but a lot of typing, lets try again.

REPEAT 4 [FD 100 RT 90]

That's it? Yup that's the same square. We did two things, we noticed a lot of redundant code in
our first example. So we asked logo to repeat the sequence 4 times. We also used abbreviated
forms of the same commands. But we can still do better. A square is a pretty popular item
wouldn't you say? Wouldn't it be nice just to say square when you wanted a square.

TO SQUARE
REPEAT 4 [FD 100 RT 90]
END

SQUARE
SQUARE

What's the TO and END for? It's to define a procedure (a small program) for the square. The
TO can be thought of as TO do something, the END terminates the TO. Once square was
"defined" we called it twice. That's all you need to get a square now, just type square. But
there is a problem. It only draws squares of 100 by 100. Wouldn't it be nice to draw any size
square? Sure would and it's easy.

EDIT "square

TO SQUARE :length
REPEAT 4 [FD :length RT 90]
END

SQUARE 100
SQUARE 200

Note all we did is replace 100 with a variable name called :length. Now when we call square
we must specify how big we want. Above we asked logo to draw one square at 100x100 and
another at 200x200. Note the ":" in front of the word length tells logo that length is a variable.
But we can still even do better. What's wrong now, you ask. Well wouldn't it be nice if we
could draw something other than a square like a triangle?

TO TRIANGLE :length
REPEAT 3 [FD :length RT 120]
END
TO SQUARE :length
REPEAT 4 [FD :length RT 90]
END
TO HEXAGON :length
REPEAT 5 [FD :length RT 72]
END

TRIANGLE 100
SQUARE 100
HEXAGON 100

Lot of typing (programmers hate to type). Why? Because more things to break and when a
change needs to be made it might have to made in many places. Smaller is not always better but
it usually helps. Lets try again.

TO POLYGON :length :sides
REPEAT :sides [FD :length RT 360.0/:sides]
END

POLYGON 100 3
POLYGON 100 4
POLYGON 100 5

What happened to TRIANGLE, SQUARE and HEXAGON? POLYGON now acts as every
equal-sided polygon possible and with only one line of code! We now repeat the sequence
based on how many :sides the caller asked for and we turn (RT) the amount of degrees
appropriate for that shape. You may not realize it but this is PROGRAMMING.

I could go on for ever, yes for ever, even to the point of writing LOGO within LOGO. This
should get you started. And what ever do make sure you have FUN.

COMMANDER

The commander is where you will spend most of your LOGO session. It is the means by which
you instruct LOGO to do what you want. The most important control (box) within the
commander is the INPUT BOX. It is located in the bottom left portion of the commander
window. For information on the different controls (boxes) see the specific box below.

Input Box
Output/Command-Recall List Box
Execute Button
Status Button
Trace Button
Halt Button
Reset Button
Yield Button
Pause Button

Input Box

The input box is tied to the Output/Command-Recall List Box and to the Execute Button. The
input box can be "filled" with anything from the list box. You can also edit the text in the input
box. If what your typing doesn't fit it will scroll automatically. Once your command is in the
box you need to execute it. You can do this by hitting ENTER or clicking on the execute button.
Using the Up/Down arrow keys will automatically jump to (set focus to) the output/command-
recall list box for the desired selection.

Output/Command-Recall List Box

The output/command-recall list box will record all output including what you type into the Input
Box. You can select text by clicking on the desired text, by typing the beginning of the desired
string, or by using the arrow keys. If something went out of view use the scroll bar. Once
selected it is automatically copied to the Input Box. A double-click on the mouse will
automatically execute what your pointing at. Left/Right arrow keys will automatically jump to
(set focus to) the Input Box for editing.

Execute Button

The execute button executes what is in the Input Box and is also "PUSHED" when you hit
ENTER key.

Status Button

This button pops up a status window telling you what LOGO is up to. Click it again to close the
window. See also the Status and NoStatus commands.

Trace Button

The trace button turns on tracing for debugging your programs. Click again to disable tracing.
You can turn tracing on or off even while Logo it running. Note that the trace button works
independent of what you are tracing with the trace command. See also Trace and Untrace
commands.

Halt Button

The halt button immediately stops LOGO from processing any further. Logo is now waiting for
a new command. See also the Halt command.

Reset Button

The reset button is like a ClearScreen command and resets LOGO.

Yield Button

The yield button asks LOGO to not let other programs use the computer while LOGO is
working. The default is Yield. Note that the commander window itself is like another
program. That is, if you hit the NoYield button while processing, the commander will lose
control (That means Halt Button won't work) until LOGO is idle again. Once Idle You can click
the yield button again to enable yielding. The reason the yield button is here is that LOGO runs
faster if it can keep the computer all to itself. See also Yield and NoYield commands.

You can achieve the best of both worlds (performance and yielding) by doing (and
understanding) the following. Let's say that you have some large multi-nested loop in your
code. The most inner loop is where most of the work is done. But there is no need to YIELD
all through the inner loop.

So we have 3 cases:

Case 1 (User in control during 10,000, lower performance):

yield
repeat 100 ~
 [~
 repeat 100 ~
 [~
 (work to be done)~
]~
]

Case 2 (User out of control for 10,000 operations, good performance):

noyield
repeat 100 ~
 [~
 repeat 100 ~
 [~
 (work to be done)~
]~
]

Case 3 (User out of control for 100 operations, still good performance):

repeat 100~
 [~
 noyield~
 repeat 100 ~
 [~
 (work to be done)~

]~
 yield~
]

Pause Button

The pause button stops LOGO so that you can examine variables, make changes or whatever.
Once paused the pause button will show what depth you paused to. To continue you must issue
a Continue command. You can also issue a Pause command within code to act as a "Break
Point". You can think of pause and continue as sort of a Halt-n-Push and Pop-n-Continue of
your state respectively.

MENU

The MENU is where you do high level tasks in LOGO, such as loading a LOGO program,
loading an BITMAP image, setting up a printer or perhaps even read this help file. See the
specific Menu item for more information.

File Menu
Bitmap Menu
Help Menu

File Menu

The File menu includes commands that enable you to operate on logo procedure files. Note that
as a side effect, any selection in this menu that has a directory in it's dialog box will effectively
change to that directory as the Current working directory. For more information, select the File
menu command name.

File New Command
File Load Command
File Save Command
File Save As Command
File Edit Command
File Exit Command

File New Command

This will clear (DELETE, PURGE, ZAP) all procedures currently loaded in memory. It's like
starting with a "New" session.

File Load Command

This allows you to load in procedures from disk into memory so that they can be executed or
edited.

File Save Command

This allows you to save everything that is loaded in memory onto the disk.

File Save As Command

This is the same as File Save Command, but prompts your for a new file name.

File Edit Command

This is how you edit procedures that have already been loaded (or developed) in memory. You
will be prompted with all existing procedures (currently loaded within memory) and you can also
enter a new one.

File Exit Command

This is how you exit MswLogo. Also see the Bye command.

Bitmap Menu

The Bitmap menu includes commands that enable you to operate on bitmap files. For more
information, see the specific Bitmap menu command name.

Bitmap New Command
Bitmap Load Command
Bitmap Save Command
Bitmap Save As Command
Bitmap Active Area Command
Bitmap Print Setup Command
Bitmap Print Command

Bitmap New Command

This will clear the work done on the screen and create a new environment to save things in.

Bitmap Load Command

This allows you to read in an image you already saved in the past. The format of the file you
save things in is known as a Microsoft Windows Bitmap (.BMP). You can interchange these
files with other applications such as Paint. Note that these files can be BIG and can take a while
to read or write.

See also the section on USING COLOR.

Bitmap Save Command

This allows you to save a PICTURE (bitmap image) of your work on the computer's disk so that
the computer will not forget it. It also allows you to add more work to an existing piece of
work. But REMEMBER if your image was generated with a LOGO program you really don't
need to save it unless you want to use the image in another application such as Paint.

The format of the file you save things in is known as a Microsoft Windows Bitmap (.BMP).
You can interchange these files with other applications such as Paint. Note that these files can
be BIG and can take a while to read or write.

See also the Bitmap Active Area Command.

Bitmap Save As Command

This is the same as Bitmap Save Command, but prompts your for a new file name.

Bitmap Active Area Command

This allows you to select the work area to be printed or saved. The Active Area dialog box
gives you 2 choices. Full image, which is the default, or Custom image. Full image prints or
saves the entire bitmap. Custom image initializes the Extents (XLow, XHigh, YLow, YHigh)
also to the full image. But the extents are now enabled and can be adjusted to your needs. The
primary purpose of this option is performance and space. You no longer need to wait for the
software to build a full image. It takes less time and less memory to print and disk space to save
a partial image. As a side effect you can adjust where your image ends up on the page by
selecting different extents.

Bitmap Print Setup Command

This allows you to setup your printer before you print.

Bitmap Print Command

This allows you to print your work on the printer.

Help Menu

The Help menu allows you to learn more about LOGO. For more information, select the Help
menu command name. Also see the Help command

Help Index Command
Help MCI Command
Help Using Help Command
Help About Command

Help Index Command

This is command puts you in Microsoft Windows Help for LOGO.

Help MCI Command

This puts you into the MCI help file. It explains the syntax of the arguments to the Mci
command.

Help Using Help Command

This will explain how to use Microsoft Windows Help.

Help About Command

This gives some details about the LOGO program like it's version.

ENTERING AND LEAVING LOGO

To start MswLogo, just type the command "win logo" to DOS or click the Logo icon if already in
Windows. To leave Logo, enter the command Bye or File Exit Command.

Logo allows you to load one or more filenames on the command line when starting Logo. The
switch to perform this function is "-l file1 file2 ..." (-l stands for Load). These files will be
loaded before the interpreter starts reading commands from the commander. If you load a file
that executes some program that includes a "bye" command, Logo will run that program and exit.
You can therefore write standalone programs in Logo and run them with batch scripts from DOS
or as new Icons from Windows. Note, the "-l" switch must follow any other switches.

MswLogo also supports switches to initialize the size of the bitmap (graphical workspace) to use.
This does NOT select the window size, the Window is a Window INTO the bitmap. The
switches are "-h number" (to select height) and "-w number" (to select width). The default is
1000x1000. This feature allows you to trade-off time versus space.

For example, to change to a 500x500 image (using 1/4 the amount of memory) and Autoload
myprog.lg then enter:

c:\logo>win logo -h 500 -w 500 -l c:\logo\myprog.lg (Entered at DOS prompt)
or
c:\logo\logo -h 500 -w 500 -l c:\logo\myprog.lg (Entered in property dialogbox for MswLogo
Icon)

If you invoke a procedure that has not been defined, Logo first looks for a file in the current
directory named proc.lg where "proc" is the procedure name in lower case letters. If such a file
exists, Logo loads that file. If the missing procedure is still undefined, or if there is no such file,
Logo then looks in the library directory for a file named proc (no ".lg") and, if it exists, loads it.
If neither file contains a definition for the procedure, then Logo signals an error. Several
procedures that are primitive in most versions of Logo are included in the default library, so if
you use a different library you may want to include some or all of the default library in it.

TOKENIZATION

Names of procedures, variables, and property lists are case-insensitive. So are the special words
END, TRUE, and FALSE. Case of letters is preserved in everything you type, however.

Within square brackets, words are delimited only by spaces and square brackets. [2+3] is a list
containing one word.

After a quotation mark outside square brackets, a word is delimited by a space, a square bracket,
or a parenthesis.

A word not after a quotation mark or inside square brackets is delimited by a space, a bracket, a
parenthesis, or an infix operator +-*/=<>. Note that words following colons are in this category.
Note that quote and colon are not delimiters.

A word consisting of a question mark followed by a number (e.g., ?3), when runparsed (i.e.,
where a procedure name is expected), is treated as if it were the sequence

(? 3)

making the number an input to the ? procedure. (See TEMPLATE-BASED ITERATION) This
special treatment does not apply to words read as data, to words with a non-number following
the question mark, or if the question mark is backslashed.

A line (an instruction line or one read by READLIST or READWORD) can be continued onto
the following line if its last character is a tilde (~). READWORD preserves the tilde and the
newline; READLIST does not.

A semicolon begins a comment in an instruction line. Logo ignores characters from the
semicolon to the end of the line. A tilde (~) as the last character still indicates a continuation
line, but not a continuation of the comment. For example, typing the instruction

print "abc;comment ~
def

will print the word abcdef. Semicolon has no special meaning in data lines read by
READWORD or READLIST, but such a line can later be reparsed using RUNPARSE and then
comments will be recognized. If a tilde is typed at the terminal for line continuation, Logo will
issue a tilde as a prompt character for the continuation line.

To include an otherwise delimiting character (including semicolon or tilde) in a word, precede it
with backslash (\). If the last character of a line is a backslash, then the newline character
following the backslash will be part of the last word on the line, and the line continues onto the
following line. To include a backslash in a word, use \\. If the combination backslash-newline
is entered at the terminal, Logo will issue a backslash as a prompt character for the continuation

line. All of this applies to data lines read with READWORD or READLIST as well as to
instruction lines. A character entered with backslash is EQUALP to the same character without
the backslash, but can be distinguished by the BACKSLASHEDP predicate. (In Europe,
backslashing is effective only on characters for which it is necessary: whitespace, parentheses,
brackets, infix operators, backslash, vertical bar, tilde, quote, question mark, colon, and
semicolon.)

An alternative notation to include otherwise delimiting characters in words is to enclose a group
of characters in vertical bars (|). All characters between vertical bars are treated as if they were
letters. In data read with READWORD the vertical bars are preserved in the resulting word.
In data read with READLIST (or resulting from a PARSE or RUNPARSE of a word) the vertical
bars do not appear explicitly; all potentially delimiting characters (including spaces, brackets,
parentheses, and infix operators) appear as though entered with a backslash. Within vertical
bars, backslash may still be used; the only characters that must be backslashed in this context are
backslash and vertical bar themselves.

Characters entered between vertical bars are forever special, even if the word or list containing
them is later reparsed with PARSE or RUNPARSE. The same is true of a character typed after a
backslash, except that when a quoted word containing a backslashed character is runparsed, the
backslashed character loses its special quality and acts thereafter as if typed normally. This
distinction is important only if you are building a Logo expression out of parts, to be RUN later,
and want to use parentheses. For example,

PRINT RUN (SE "\(2 "+ 3 "\))

will print 5, but

RUN (SE "MAKE ""|(| 2)

will create a variable whose name is open-parenthesis. (Each example would fail if vertical bars
and backslashes were interchanged.)

DATA STRUCTURE PRIMITIVES

CONSTRUCTORS
SELECTORS
MUTATORS
PREDICATES (Data)
QUERIES

CONSTRUCTORS

WORD
LIST
SENTENCE
FPUT
LPUT
ARRAY
MDARRAY
LISTTOARRAY
ARRAYTOLIST
COMBINE
REVERSE
GENSYM

WORD

WORD word1 word2
(WORD word1 word2 word3 ...)

Outputs a word formed by concatenating its inputs.

LIST

LIST thing1 thing2
(LIST thing1 thing2 thing3 ...)

Outputs a list whose members are its inputs, which can be any Logo object (word, list, or array).

SENTENCE

SENTENCE thing1 thing2
SE thing1 thing2
(SENTENCE thing1 thing2 thing3 ...)
(SE thing1 thing2 thing3 ...)

Outputs a list whose members are its inputs, if those inputs are not lists, or the members of its
inputs, if those inputs are lists.

FPUT

FPUT thing list

Outputs a list equal to its second input with one extra member, the first input, at the beginning.

LPUT

LPUT thing list

Outputs a list equal to its second input with one extra member, the first input, at the end.

ARRAY

ARRAY size
(ARRAY size origin)

Outputs an array of "size" elements (must be a positive integer), each of which initially is an
empty list. Array elements can be selected with ITEM and changed with SETITEM. The first
element of the array is element number 1 unless an "origin" input (must be an integer) is given,
in which case the first element of the array has that number as its index. (Typically 0 is used as
the origin if anything.) Arrays are printed by PRINT and friends, and can be typed in, inside
curly braces; indicate an origin with {a b c}@0.

MDARRAY

MDARRAY sizelist (library procedure)
(MDARRAY sizelist origin)

Outputs a multi-dimensional array. The first input must be a list of one or more positive
integers. The second input, if present, must be a single integer that applies to every dimension
of the array. Ex: (MDARRAY [3 5] 0) outputs a two-dimensional array whose elements range
from [0 0] to [2 4].

LISTTOARRAY

LISTTOARRAY list (library procedure)
(LISTTOARRAY list origin)

Outputs an array of the same size as the input list, whose elements are the members of the input
list.

ARRAYTOLIST

ARRAYTOLIST array (library procedure)

Outputs a list whose members are the elements of the input array. The first member of the
output is the first element of the array, regardless of the array's origin.

COMBINE

COMBINE thing1 thing2 (library procedure)

If thing2 is a word, outputs WORD thing1 thing2. If thing2 is a list, outputs FPUT thing1
thing2.

REVERSE

REVERSE list (library procedure)

Outputs a list whose members are the members of the input list, in reverse order.

GENSYM

GENSYM (library procedure)

Outputs a unique word each time it's invoked. The words are of the form G1, G2, etc.

SELECTORS

FIRST
FIRSTS
LAST
BUTFIRST
BUTFIRSTS
BUTLAST
ITEM
MDITEM
PICK
REMOVE
REMDUP
QUOTED

FIRST

FIRST thing

If the input is a word, outputs the first character of the word. If the input is a list, outputs the
first member of the list. If the input is an array, outputs the origin of the array (that is, the
INDEX OF the first element of the array).

FIRSTS

FIRSTS list

Outputs a list containing the FIRST of each member of the input list. It is an error if any
member of the input list is empty. (The input itself may be empty, in which case the output is
also empty.) This could be written as

to firsts :list
output map "first :list
end

but is provided as a primitive in order to speed up the iteration tools MAP, MAP.SE, and
FOREACH.

Example:

to transpose :matrix
if emptyp first :matrix [op []]
op fput firsts :matrix transpose bfs :matrix
end

LAST

LAST word-or-list

If the input is a word, outputs the last character of the word. If the input is a list, outputs the last
member of the list.

BUTFIRST

BUTFIRST word-or-list
BF word-or-list

If the input is a word, outputs a word containing all but the first character of the input. If the
input is a list, outputs a list containing all but the first member of the input.

BUTFIRSTS

BUTFIRSTS list
BFS list

Outputs a list containing the BUTFIRST of each member of the input list. It is an error if any
member of the input list is empty or an array. (The input itself may be empty, in which case the
output is also empty.) This could be written as

to butfirsts :list
output map "butfirst :list
end

but is provided as a primitive in order to speed up the iteration tools MAP, MAP.SE, and
FOREACH.

BUTLAST

BUTLAST word-or-list
BL word-or-list

If the input is a word, outputs a word containing all but the last character of the input. If the
input is a list, outputs a list containing all but the last member of the input.

ITEM

ITEM index thing

If the "thing" is a word, outputs the "index"th character of the word. If the "thing" is a list,
outputs the "index"th member of the list. If the "thing" is an array, outputs the "index"th
element of the array. "Index" starts at 1 for words and lists; the starting index of an array is
specified when the array is created.

MDITEM

MDITEM indexlist array (library procedure)

Outputs the element of the multidimensional "array" selected by the list of numbers "indexlist".

PICK

PICK list (library procedure)

Outputs a randomly chosen member of the input list.

REMOVE

REMOVE thing list (library procedure)

Outputs a copy of "list" with every member equal to "thing" removed.

REMDUP

REMDUP list (library procedure)

Outputs a copy of "list" with duplicate members removed. If two or more members of the input
are equal, the rightmost of those members is the one that remains in the output.

QUOTED

QUOTED thing (library procedure)

Outputs its input, if a list; outputs its input with a quotation mark prepended, if a word.

MUTATORS

SETITEM
MDSETITEM
.SETFIRST
.SETBF
.SETITEM
PUSH
POP
QUEUE
DEQUEUE

SETITEM

SETITEM index array value

Command that replaces the "index"th element of "array" with the new "value". Ensures that the
resulting array is not circular, i.e., "value" may not be a list or array that contains "array".

MDSETITEM

MDSETITEM indexlist array value (library procedure)

Command that replaces the element of "array" chosen by "indexlist" with the new "value".

.SETFIRST

.SETFIRST list value

Command that changes the first member of "list" to be "value". WARNING: Primitives whose
names start with a period are DANGEROUS. Their use by non-experts is not recommended.
The use of .SETFIRST can lead to circular list structures, which will get some Logo primitives
into infinite loops; unexpected changes to other data structures that share storage with the list
being modified; and the permanent loss of memory if a circular structure is released.

.SETBF

.SETBF list value

Command that changes the butfirst of "list" to be "value". WARNING: Primitives whose names
start with a period are DANGEROUS. Their use by non-experts is not recommended. The use
of .SETBF can lead to circular list structures, which will get some Logo primitives into infinite
loops; unexpected changes to other data structures that share storage with the list being modified;
Logo crashes and core dumps if the butfirst of a list is not itself a list; and the permanent loss of
memory if a circular structure is released.

.SETITEM

.SETITEM index array value

Command that changes the "index"th element of "array" to be "value", like SETITEM, but
without checking for circularity. WARNING: Primitives whose names start with a period are
DANGEROUS. Their use by non-experts is not recommended. The use of .SETITEM can
lead to circular arrays, which will get some Logo primitives into infinite loops; and the
permanent loss of memory if a circular structure is released.

PUSH

PUSH stackname thing (library procedure)

Command that adds the "thing" to the stack that is the value of the variable whose name is
"stackname". This variable must have a list as its value; the initial value should be the empty
list. New members are added at the front of the list. Later, "thing" can be POPed off the
"stackname".

POP

POP stackname (library procedure)

Outputs the most recently PUSHed member of the stack that is the value of the variable whose
name is "stackname" and removes that member from the stack.

QUEUE

QUEUE queuename thing (library procedure)

Command that adds the "thing" to the queue that is the value of the variable whose name is
"queuename". This variable must have a list as its value; the initial value should be the empty
list. New members are added at the back of the list. Later "thing" can be DEQUEUEed from the
"queuename".

DEQUEUE

DEQUEUE queuename (library procedure)

Outputs the least recently (oldest) QUEUEd member of the queue that is the value of the variable
whose name is "queuename" and removes that member from the queue.

PREDICATES (Data)

WORDP
LISTP
ARRAYP
EMPTYP
EQUALP
BEFOREP
.EQ
MEMBERP
NUMBERP
BACKSLASHEDP

WORDP

WORDP thing

Outputs TRUE if the input is a word, FALSE otherwise.

LISTP

LISTP thing

Outputs TRUE if the input is a list, FALSE otherwise.

ARRAYP

ARRAYP thing

Outputs TRUE if the input is an array, FALSE otherwise.

EMPTYP

EMPTYP thing

Outputs TRUE if the input is the empty word or the empty list, FALSE otherwise.

EQUALP

EQUALP thing1 thing2

Outputs TRUE if the inputs are equal, FALSE otherwise. Two numbers are equal if they have
the same numeric value. Two non-numeric words are equal if they contain the same characters
in the same order. If there is a variable named CASEIGNOREDP whose value is TRUE, then
an upper case letter is considered the same as the corresponding lower case letter. (This is the
case by default.) Two lists are equal if their members are equal. An array is only equal to
itself; two separately created arrays are never equal even if their elements are equal. (It is
important to be able to know if two expressions have the same array as their value because arrays
are mutable; if, for example, two variables have the same array as their values then performing
SETITEM on one of them will also change the other.)

BEFOREP

BEFOREP word1 word2

Outputs TRUE if word1 comes before word2 in ASCII collating sequence (for words of letters,
in alphabetical order). Case-sensitivity is determined by the value of CASEIGNOREDP. Note
that if the inputs are numbers, the result may not be the same as with LESSP; for example,
BEFOREP 3 12 is false because 3 collates before 1.

.EQ

.EQ thing1 thing2

Outputs TRUE if its two inputs are the same object, so that applying a mutator to one will change
the other as well. Outputs FALSE otherwise, even if the inputs are equal in value.
WARNING: Primitives whose names start with a period are DANGEROUS. Their use by non-
experts is not recommended. The use of mutators can lead to circular data structures, infinite
loops, or Logo crashes.

MEMBERP

MEMBERP thing1 thing2

If "thing2" is a list or an array, outputs TRUE if "thing1" is EQUALP to a member or element of
"thing2", FALSE otherwise. If "thing2" is a word, outputs TRUE if "thing1" is EQUALP to a
substring of "thing2", FALSE otherwise. Note that this behavior for words is different from
other dialects, in which "thing1" must be a single character in order to make MEMBERP true
with "thing2" a word.

NUMBERP

NUMBERP thing

Outputs TRUE if the input is a number, FALSE otherwise.

BACKSLASHEDP

BACKSLASHEDP char

Outputs TRUE if the input character was originally entered into Logo with a backslash (\) before
it to prevent special syntactic meaning, FALSE otherwise. (In Europe, outputs TRUE only if
the character is a backslashed space, tab, newline, or one of ()[]+-*/=<>":;\~?)

QUERIES

COUNT
ASCII
CHAR
MEMBER
LOWERCASE
UPPERCASE
STANDOUT
PARSE
RUNPARSE
TIME

COUNT

COUNT thing

Outputs the number of characters in the input, if the input is a word; outputs the number of
members or elements in the input, if it is a list or an array. (For an array, this may or may not be
the index of the last element, depending on the array's origin.)

ASCII

ASCII char

Outputs the integer (in the United States, between 0 and 127) that represents the input character
in the ASCII code.

CHAR

CHAR int

Outputs the character represented in the ASCII code by the input, which must be an integer
between 0 and 127.

MEMBER

MEMBER thing1 thing2

If "thing2" is a word or list and if MEMBERP with these inputs would output TRUE, outputs the
portion of "thing2" from the first instance of "thing1" to the end. If MEMBERP would output
FALSE, outputs the empty word or list according to the type of "thing2". It is an error for
"thing2" to be an array.

LOWERCASE

LOWERCASE word

Outputs a copy of the input word, but with all uppercase letters changed to the corresponding
lowercase letter. (In the United States, letters that were initially read by Logo preceded by a
backslash are immune to this conversion.)

UPPERCASE

UPPERCASE word

Outputs a copy of the input word, but with all lowercase letters changed to the corresponding
uppercase letter. (In the United States, letters that were initially read by Logo preceded by a
backslash are immune to this conversion.)

STANDOUT

STANDOUT thing

(Not supported in MswLogo yet)

Outputs a word that, when printed, will appear like the input but displayed in standout mode
(boldface, reverse video, or whatever your terminal does for standout). The word contains
terminal-specific magic characters at the beginning and end; in between is the printed form (as if
displayed using TYPE) of the input. The output is always a word, even if the input is of some
other type, but it may include spaces and other formatting characters. Note: a word output by
STANDOUT while Logo is running on one terminal will probably not have the desired effect if
printed on another type of terminal.

PARSE

PARSE word

Outputs the list that would result if the input word were entered in response to a READLIST
operation. That is, PARSE READWORD has the same value as READLIST for the same
characters read.

RUNPARSE

RUNPARSE word-or-list

Outputs the list that would result if the input word or list were entered as an instruction line;
characters such as infix operators and parentheses are separate members of the output. Note that
sublists of a runparsed list are not themselves runparsed.

TIME

TIME

Outputs the current time on the system as a list.

COMMUNICATION

TRANSMITTERS
RECEIVERS
FILE ACCESS
Serial and Parallel Port communication
TERMINAL and MOUSE ACCESS

TRANSMITTERS

Note: If there is a variable named PRINTDEPTHLIMIT with a nonnegative integer value, then
complex list and array structures will be printed only to the allowed depth. That is, members of
members of... of members will be allowed only so far. The elements or members omitted
because they are just past the depth limit are indicated by an ellipsis for each one, so a too-deep
list of two elements will print as [... ...].

If there is a variable named PRINTWIDTHLIMIT with a nonnegative integer value, then only
the first so many elements or members of any array or list will be printed. A single ellipsis
replaces all missing objects within the structure. The width limit also applies to the number of
characters printed in a word, except that a PRINTWIDTHLIMIT between 0 and 9 will be treated
as if it were 10 when applied to words. This limit applies not only to the top-level printed object
but to any substructures within it.

PRINT
TYPE
SHOW

PRINT

PRINT thing
PR thing
(PRINT thing1 thing2 ...)
(PR thing1 thing2 ...)

Command that prints the input or inputs to the current write stream (initially the terminal). All
the inputs are printed on a single line, separated by spaces, ending with a newline. If an input is
a list, square brackets are not printed around it, but brackets are printed around sublists. Braces
are always printed around arrays.

TYPE

TYPE thing
(TYPE thing1 thing2 ...)

Command that prints the input or inputs like PRINT, except that no newline character is printed
at the end and multiple inputs are not separated by spaces. Note: printing to the terminal is
ordinarily "line buffered"; that is, the characters you print using TYPE will not actually appear
on the screen until either a newline character is printed (for example, by PRINT or SHOW) or
Logo tries to read from the keyboard (either at the request of your program or after an instruction
prompt). This buffering makes the program much faster than it would be if each character
appeared immediately, and in most cases the effect is not disconcerting. To accommodate
programs that do a lot of positioned text display using TYPE, Logo will force printing whenever
SETCURSOR is invoked. This solves most buffering problems. Still, on occasion you may
find it necessary to force the buffered characters to be printed explicitly; this can be done using
the WAIT command. WAIT 0 will force printing without actually waiting.

SHOW

SHOW thing
(SHOW thing1 thing2 ...)

Command that prints the input or inputs like PRINT, except that if an input is a list it is printed
inside square brackets.

RECEIVERS

READLIST
READWORD
READCHAR
READCHARS
SHELL

READLIST

READLIST
RL

Reads a line from the read stream (initially the terminal) and outputs that line as a list. The line
is separated into elements as though it were typed in square brackets in an instruction. If the
read stream is a file, and the end of file is reached, READLIST outputs the empty word (not the
empty list). READLIST processes backslash, vertical bar, and tilde characters in the read
stream; the output list will not contain these characters but they will have had their usual effect.
READLIST does not, however, treat semicolon as a comment character.

READWORD

READWORD
RW

Reads a line from the read stream and outputs that line as a word. The output is a single word
even if the line contains spaces, brackets, etc. If the read stream is a file, and the end of file is
reached, READWORD outputs the empty list (not the empty word). READWORD processes
backslash, vertical bar, and tilde characters in the read stream. In the case of a tilde used for line
continuation, the output word DOES include the tilde and the newline characters, so that the user
program can tell exactly what the user entered. Vertical bars in the line are also preserved in the
output. Backslash characters are not preserved in the output, but the character following the
backslash has 128 added to its representation. Programs can use BACKSLASHEDP to check
for this code. (In Europe, backslashedness is preserved only for certain characters. See
BACKSLASHEDP.)

READCHAR

READCHAR
RC

Reads a single character from the read stream and outputs that character as a word. If the read
stream is a file, and the end of file is reached, READCHAR outputs the empty list (not the empty
word). If the read stream is a terminal, echoing is turned off when READCHAR is invoked, and
remains off until READLIST or READWORD is invoked or a Logo prompt is printed.
Backslash, vertical bar, and tilde characters have no special meaning in this context.

READCHARS

READCHARS num
RCS num

Reads "num" characters from the read stream and outputs those characters as a word. If the read
stream is a file, and the end of file is reached, READCHARS outputs the empty list (not the
empty word). If the read stream is a terminal, echoing is turned off when READCHARS is
invoked, and remains off until READLIST or READWORD is invoked or a Logo prompt is
printed. Backslash, vertical bar, and tilde characters have no special meaning in this context.

SHELL

SHELL command
(SHELL command wordflag)

(not implemented in MswLogo yet)

Outputs the result of running "command" as a shell command. (The command is sent to /bin/sh,
not csh or other alternatives.) If the command is a literal list in the instruction line, and if you
want a backslash character sent to the shell, you must use \\ to get the backslash through Logo's
reader intact. The output is a list containing one member for each line generated by the shell
command. Ordinarily each such line is represented by a list in the output, as though the line
were read using READLIST. If a second input is given, regardless of the value of the input,
each line is represented by a word in the output as though it were read with READWORD.
Example:

to dayofweek
output first first shell [date]
end

This uses "first first" to extract the first word of the first (and only) line of the shell output.

FILE ACCESS

OPENREAD
OPENWRITE
OPENAPPEND
OPENUPDATE
CLOSE
ALLOPEN
CLOSEALL
ERASEFILE
DRIBBLE
NODRIBBLE
SETREAD
SETWRITE
READER
WRITER
SETREADPOS
SETWRITEPOS
READPOS
WRITEPOS
EOFP

OPENREAD

OPENREAD filename

Command that opens the named file for reading. The read position is initially at the beginning
of the file.

OPENWRITE

OPENWRITE filename

Command that pens the named file for writing. If the file already existed, the old version is
deleted and a new, empty file is created.

OPENAPPEND

OPENAPPEND filename

Command that opens the named file for writing. If the file already exists, the write position is
initially set to the end of the old file, so that newly written data will be appended to it.

OPENUPDATE

OPENUPDATE filename

Command that opens the named file for reading and writing. The read and write position is
initially set to the end of the old file, if any. Note: each open file has only one position, for both
reading and writing. If a file opened for update is both READER and WRITER at the same
time, then SETREADPOS will also affect WRITEPOS and vice versa. Also, if you alternate
reading and writing the same file, you must SETREADPOS between a write and a read, and
SETWRITEPOS between a read and a write.

CLOSE

CLOSE filename

Command that closes the named file.

ALLOPEN

ALLOPEN

Outputs a list whose members are the names of all files currently open. This list does not
include the dribble file, if any.

CLOSEALL

CLOSEALL (library procedure)

Command that closes all open files. Abbreviates FOREACH ALLOPEN [CLOSE ?]

ERASEFILE

ERASEFILE filename
ERF filename

Command that erases (deletes, removes) the named file, which should not currently be open.

DRIBBLE

DRIBBLE filename

Command that creates a new file whose name is the input, like OPENWRITE, and begins
recording in that file everything that is read from the keyboard or written to the terminal. That
is, this writing is in addition to the writing to WRITER. The intent is to create a transcript of a
Logo session, including things like prompt characters and interactions.

NODRIBBLE

NODRIBBLE

Command that stops copying information into the dribble file, and closes the file.

SETREAD

SETREAD filename

Command that makes the named file the read stream, used for READLIST, etc. The file must
already be open with OPENREAD or OPENUPDATE. If the input is the empty list, then the
read stream becomes the terminal, as usual. Changing the read stream does not close the file
that was previously the read stream, so it is possible to alternate between files.

SETWRITE

SETWRITE filename

Command that makes the named file the write stream, used for PRINT, etc. The file must
already be open with OPENWRITE, OPENAPPEND, or OPENUPDATE. If the input is the
empty list, then the write stream becomes the terminal, as usual. Changing the write stream
does not close the file that was previously the write stream, so it is possible to alternate between
files.

READER

READER

Outputs the name of the current read stream file, or the empty list if the read stream is the
terminal.

WRITER

WRITER

Outputs the name of the current write stream file, or the empty list if the write stream is the
terminal.

SETREADPOS

SETREADPOS charpos

Command that sets the file pointer of the read stream file so that the next READLIST, etc., will
begin reading at the "charpos"th character in the file, counting from 0. (That is, SETREADPOS
0 will start reading from the beginning of the file.) Meaningless if the read stream is the
terminal.

SETWRITEPOS

SETWRITEPOS charpos

Command that sets the file pointer of the write stream file so that the next PRINT, etc., will
begin writing at the "charpos"th character in the file, counting from 0. (That is,
SETWRITEPOS 0 will start writing from the beginning of the file.) Meaningless if the write
stream is the terminal.

READPOS

READPOS

Outputs the file position of the current read stream file.

WRITEPOS

WRITEPOS

Outputs the file position of the current write stream file.

EOFP

EOFP

Predicate that outputs TRUE if there are no more characters to be read in the read stream file,
FALSE otherwise.

Serial and Parallel Port communication

PORTOPEN
PORTCLOSE
PORTFLUSH
PORTMODE
PORTREADARRAY
PORTREADCHAR
PORTWRITEARRAY
PORTWRITECHAR

PORTOPEN

PORTOPEN port

This command is used to gain access to the serial and parallel ports of your computer. Once the
desired port is open you can read (PORTREADCHAR or PORTREADARRAY) or write
(PORTWRITECHAR or PORTWRITEARRAY) to it. You can set the characteristics of the port
with PORTMODE. Only one port can be open at any given time. Once finished with the port
you should close the port with PORTCLOSE.

port:(WORD) Is the name of the port wish to open (e.g. COM1-COM4 and LPT1-LPT3)

Example:

portopen "com1

PORTCLOSE

PORTCLOSE

This command closes a port that was opened by PORTOPEN.

PORTFLUSH

PORTFLUSH queue

This command is used to flush the ports input or output queue.

queue:(INTEGER) Specifies which queue you want flushed 0 (output) and 1 (input).

PORTMODE

PORTMODE mode

This command is used to set the mode (speed, parity, data bits, and stop bits) of the port.

Note that the characteristics (such as speed and flow control) can also be set through the Control
Panel PORTS icon. Which is the only way you can specify control flow.

mode:(WORD) Is mode you wish to set to ("COMn:SPEED,PARITY,DATA,STOP). Same
format as the DOS MODE command.

Example:

portmode "com1:9600,n,8,1

PORTREADARRAY

PORTREADARRAY count buffer

This command will read the currently open port and write the data into the given buffer array. It
will attempt to read "count" many characters from the port if they are available. It will output
the actual number of bytes read.

count:(INTEGER) Is the number of characters to read from the port. You can use a larger
number than the array size if you just want to fill the array.

buffer:(BUFFER) Is an ARRAY buffer to which input data is written to. It will be filled with byte
size integers.

output:(INTEGER) Is the actual number of bytes read off the port.

Example:

make "buff {0 0 0 0 0 0}
print se [Bytes read...] portreadarray 99 :buff
print :buff

PORTREADCHAR

PORTREADCHAR

This command will read one byte from the currently open port and output it as an integer. It
will output "-1" if no character was available.

output:(INTEGER) Is the byte data read from the port (-1 if none available or error).

Example:

print char portreadchar

PORTWRITEARRAY

PORTWRITEARRAY count buffer

This command will write to the currently open port with the data in the given buffer array. It
will attempt to write "count" many characters to the port if possible. It will output the actual
number of bytes written.

count:(INTEGER) Is the number of characters to write to the port. You can use a larger number
than the array size if you just want to dump the whole array.

buffer:(BUFFER) Is an ARRAY buffer to which output data read from. It must contain
byte size integers.

output:(INTEGER) Is the actual number of bytes written to the port.

Example:

make "buff {1 2 3 0 0 0}
print se [Bytes written...] portwritearray 3 :buff

PORTWRITECHAR

PORTWRITECHAR data

This command will write one data byte to the currently open port and output the number of bytes
written (0 or 1).

data:(INTEGER) Is the byte data that is to be written to the port.

output:(INTEGER) Is the number of bytes written (0 or 1).

Example:

print se [bytes written...] portwritechar ascii "A

TERMINAL and MOUSE ACCESS

KEYP
KEYBOARDON
KEYBOARDOFF
KEYBOARDVALUE
MOUSEON
MOUSEOFF
MOUSEPOS
CLEARTEXT
SETCURSOR
CURSOR
SETMARGINS

KEYP

KEYP

(not supported in MswLogo yet, see KEYBOARDON)

Predicate that outputs TRUE if there are characters waiting to be read from the read stream. If
the read stream is a file, this is equivalent to NOT EOFP. If the read stream is the terminal, then
echoing is turned off and the terminal is set to CBREAK (character at a time instead of line at a
time) mode. It remains in this mode until some line-mode reading is requested (e.g.,
READLIST). The Unix operating system forgets about any pending characters when it switches
modes, so the first KEYP invocation will always output FALSE.

KEYBOARDON

KEYBOARDON keyhit

This command will enable you to directly trap keyboard events. In order to obtain what key
was pushed call KEYBOARDVALUE in your keydown or keyup procedure. Note that the
"Screen" window must have focus (NOT the commander) to catch the key events. You can
force this by SETFOCUS [MSWLOGO SCREEN] before you issue this command.

keyhit:(LIST) Is a (short) list of logo commands (or a procedure name) to execute when the key
is HIT.

KEYBOARDOFF

KEYBOARDOFF

This command will disable trapping of keyboard events.

KEYBOARDVALUE

KEYBOARDVALUE

This command will output the value of the last key pushed DOWN or let UP.

output: (INTEGER) Is the ASCII value of the last Keyhit event.

Example:

keyboardon [print char keyboardvalue]
<now hit the keys you want the value of>

Remember "MswLogo Screen" must have focus (be selected) when you hit the keys.

MOUSEON

MOUSEON leftbuttondown leftbuttonup rightbuttondown rightbuttonup move

This command will enable you to directly trap mouse events. In order to obtain where the
mouse was when a button was pushed or the mouse moved call MOUSEPOS in your button or
move procedure. Note that the "Screen" window must have focus (NOT the commander) to
catch the mouse events.

leftbuttondown:(LIST) Is a (short) list of logo commands (or a procedure name) to execute when
the Left Button is pushed DOWN.

leftbuttonup:(LIST) Is a (short) list of logo commands (or a procedure name) to execute when
the Left Button is let UP.

rightbuttondown:(LIST) Is a (short) list of logo commands (or a procedure name) to execute
when the Right Button is pushed DOWN.

rightbuttondown:(LIST) Is a (short) list of logo commands (or a procedure name) to execute
when the Right Button is let UP.

move: (LIST) Is a (short) list of logo commands (or a procedure name) to execute when the
mouse is moved.

MOUSEOFF

MOUSEOFF

This command will disable trapping of mouse events.

MOUSEPOS

MOUSEPOS

This command will output the position of the mouse at the last mouse event.

output: (LIST) Is the position ([x y]) of the last mouse event.

Example:

to paint
make "mousedn 0
mouseon [mdn] [mup] [] [] [mmv]
end

to mdn
setxy first mousepos last mousepos
pd make "mousedn 1
end

to mmv
if equalp :mousedn 1 [setxy first mousepos last mousepos]
end

to mup
pu make "mousedn 0
end

CLEARTEXT

CLEARTEXT
CT

Command that clears the text screen of the terminal.

SETCURSOR

(not supported in MswLogo yet)

SETCURSOR vector

Command where the input is a list of two numbers, the x and y coordinates of a screen position
(origin in the upper left corner, positive direction is southeast). The screen cursor is moved to
the requested position. This command also forces the immediate printing of any buffered
characters.

CURSOR

CURSOR

(not supported in MswLogo yet)

Outputs a list containing the current x and y coordinates of the screen cursor. Logo may get
confused about the current cursor position if, e.g., you type in a long line that wraps around or
your program prints escape codes that affect the terminal strangely.

SETMARGINS

SETMARGINS vector

(not supported in MswLogo yet)

Command where the input must be a list of two numbers, as for SETCURSOR. The effect is to
clear the screen and then arrange for all further printing to be shifted down and to the right
according to the indicated margins. Specifically, every time a newline character is printed
(explicitly or implicitly) Logo will type x_margin spaces, and on every invocation of
SETCURSOR the margins will be added to the input x and y coordinates. (CURSOR will
report the cursor position relative to the margins, so that this shift will be invisible to Logo
programs.) The purpose of this command is to accommodate the display of terminal screens in
lecture halls with inadequate TV monitors that miss the top and left edges of the screen.

ARITHMETIC

NUMERIC OPERATIONS
PREDICATES (Arithmetic)
RANDOM NUMBERS
PRINT FORMATTING
BITWISE OPERATIONS

NUMERIC OPERATIONS

SUM
DIFFERENCE
MINUS
PRODUCT
QUOTIENT
REMAINDER
INT
ROUND
SQRT
POWER
EXP
LOG10
LN
SIN
RADSIN
COS
RADCOS
ARCTAN
RADARCTAN

SUM

SUM num1 num2
(SUM num1 num2 num3 ...)
num1 + num2

Outputs the sum of its inputs.

DIFFERENCE

DIFFERENCE num1 num2
num1 - num2

Outputs the difference of its inputs. Minus sign means infix difference in ambiguous contexts
(when preceded by a complete expression), unless it is preceded by a space and followed by a
non space.

MINUS

MINUS num
- num

Outputs the negative of its input. Minus sign means unary minus if it is immediately preceded
by something requiring an input, or preceded by a space and followed by a non space. There is
a difference in binding strength between the two forms:

MINUS 3 + 4 means -(3+4)
- 3 + 4 means (-3)+4

PRODUCT

PRODUCT num1 num2
(PRODUCT num1 num2 num3 ...)
num1 * num2

Outputs the product of its inputs.

QUOTIENT

QUOTIENT num1 num2
(QUOTIENT num)
num1 / num2

Outputs the quotient of its inputs. The quotient of two integers is an integer if and only if the
dividend is a multiple of the divisor. (In other words, QUOTIENT 5 2 is 2.5, not 2, but
QUOTIENT 4 2 is 4, not 4.0 -- it does the right thing.) With a single input, QUOTIENT outputs
the reciprocal of the input.

REMAINDER

REMAINDER num1 num2

Outputs the remainder on dividing "num1" by "num2"; both must be integers and the result is an
integer with the same sign as num2.

INT

INT num

Outputs its input with fractional part removed, i.e., an integer with the same sign as the input,
whose absolute value is the largest integer less than or equal to the absolute value of the input.

Note: Inside the computer numbers are represented in two different forms, one for integers and
one for numbers with fractional parts. However, on most computers the largest number that can
be represented in integer format is smaller than the largest integer that can be represented (even
with exact precision) in floating-point (fraction) format. The INT operation will always output a
number whose value is mathematically an integer, but if its input is very large the output may not
be in integer format. In that case, operations like REMAINDER that require an integer input
will not accept this number.

ROUND

ROUND num

Outputs the nearest integer to the input.

SQRT

SQRT num

Outputs the square root of the input, which must be nonnegative.

POWER

POWER num1 num2

Outputs "num1" raised to the power of "num2". If num1 is negative, then num2 must be an
integer.

EXP

EXP num

Outputs e (2.718281828+) to the power of "num".

LOG10

LOG10 num

Outputs the common logarithm of "num".

LN

LN num

Outputs the natural logarithm of the "num".

SIN

SIN degrees

Outputs the sine of "degrees", which is taken in degrees.

RADSIN

RADSIN radians

Outputs the sine of "radians", which is taken in radians.

COS

COS degrees

Outputs the cosine of "degrees", which is taken in degrees.

RADCOS

RADCOS radians

Outputs the cosine of "radians", which is taken in radians.

ARCTAN

ARCTAN num
(ARCTAN x y)

Outputs the arctangent, in degrees, of its input. With two inputs, outputs the arctangent of y/x, if
x is non zero, or 90 or -90 depending on the sign of y, if x is zero.

RADARCTAN

RADARCTAN num
(RADARCTAN x y)

Outputs the arctangent, in radians, of its input. With two inputs, outputs the arctangent of y/x, if
x is non zero, or pi/2 or -pi/2 depending on the sign of y, if x is zero.

The expression 2*(RADARCTAN 0 1) can be used to get the value of pi.

PREDICATES (Arithmetic)

LESSP
GREATERP

LESSP

LESSP num1 num2
num1 < num2

Outputs TRUE if its first input is strictly less than its second.

GREATERP

GREATERP num1 num2
num1 > num2

Outputs TRUE if its first input is strictly greater than its second.

RANDOM NUMBERS

RANDOM
RERANDOM

RANDOM

RANDOM num

Outputs a random nonnegative integer less than its input, which must be an integer.

RERANDOM

RERANDOM
(RERANDOM seed)

Command that makes the results of RANDOM reproducible. Ordinarily the sequence of
random numbers is different each time Logo is used. If you need the same sequence of pseudo-
random numbers repeatedly, e.g. to debug a program, say RERANDOM before the first
invocation of RANDOM. If you need more than one repeatable sequence, you can give
RERANDOM an integer input; each possible input selects a unique sequence of numbers.

PRINT FORMATTING

FORM

FORM

FORM num width precision

Outputs a word containing a printable representation of "num", possibly preceded by spaces (and
therefore not a number for purposes of performing arithmetic operations), with at least "width"
characters, including exactly "precision" digits after the decimal point. (If "precision" is 0 then
there will be no decimal point in the output.)

As a debugging feature, (FORM num -1 format) will print the floating point "num" according to
the C printf "format", to allow

to hex :num
op form :num -1 "|%08X %08X|
end

to allow finding out the exact result of floating point operations. The precise format needed
may be machine-dependent.

BITWISE OPERATIONS

BITAND
BITOR
BITXOR
BITNOT
ASHIFT
LSHIFT

BITAND

BITAND num1 num2
(BITAND num1 num2 num3 ...)

Outputs the bitwise AND of its inputs, which must be integers.

BITOR

BITOR num1 num2
(BITOR num1 num2 num3 ...)

Outputs the bitwise OR of its inputs, which must be integers.

BITXOR

BITXOR num1 num2
(BITXOR num1 num2 num3 ...)

Outputs the bitwise EXCLUSIVE OR of its inputs, which must be integers.

BITNOT

BITNOT num

Outputs the bitwise NOT of its input, which must be an integer.

ASHIFT

ASHIFT num1 num2

Outputs "num1" arithmetic-shifted to the left by "num2" bits. If num2 is negative, the shift is to
the right with sign extension. The inputs must be integers.

LSHIFT

LSHIFT num1 num2

Outputs "num1" logical-shifted to the left by "num2" bits. If num2 is negative, the shift is to the
right with zero fill. The inputs must be integers.

LOGICAL OPERATIONS

AND
OR
NOT

AND

AND tf1 tf2
(AND tf1 tf2 tf3 ...)

Outputs TRUE if all inputs are TRUE, otherwise FALSE. All inputs must be TRUE or FALSE.
(Comparison is case-insensitive regardless of the value of CASEIGNOREDP. That is, "true" or
"True" or "TRUE" are all the same.)

OR

OR tf1 tf2
(OR tf1 tf2 tf3 ...)

Outputs TRUE if any input is TRUE, otherwise FALSE. All inputs must be TRUE or FALSE.
(Comparison is case-insensitive regardless of the value of CASEIGNOREDP. That is, "true" or
"True" or "TRUE" are all the same.)

NOT

NOT tf

Outputs TRUE if the input is FALSE, and vice versa.

GRAPHICS

Berkeley Logo provides traditional Logo turtle graphics with one turtle. Multiple turtles,
dynamic turtles, and collision detection are not supported. This is the most hardware-dependent
part of Logo; some features may exist on some machines but not others. Nevertheless, the goal
has been to make Logo programs as portable as possible, rather than to take fullest advantage of
the capabilities of each machine. In particular, Logo attempts to scale the screen so that turtle
coordinates [-100 -100] and [100 100] fit on the graphics window, and so that the aspect ratio is
1:1, although some PC screens have nonstandard aspect ratios.

The center of the graphics window (which may or may not be the entire screen, depending on the
machine used) is turtle location [0 0]. Positive X is to the right; positive Y is up. Headings
(angles) are measured in degrees clockwise from the positive Y axis. (This differs from the
common mathematical convention of measuring angles counterclockwise from the positive X
axis.) The turtle is represented as an isoceles triangle; the actual turtle position is at the
midpoint of the base (the short side).

MswLogo does take advantage of the hardware and therefore is not completely portable with
other ports of ucblogo (Berkeley Logo).

TURTLE MOTION
TURTLE MOTION QUERIES
TURTLE AND WINDOW CONTROL
USING COLOR
TURTLE AND WINDOW QUERIES
PEN CONTROL
PEN QUERIES

TURTLE MOTION

FORWARD
BACK
LEFT
RIGHT
SETPOS
SETXY
SETX
SETY
HOME
SETHEADING
ARC

FORWARD

FORWARD dist
FD dist

Moves the turtle forward, in the direction that it's facing, by the specified distance (measured in
turtle steps).

BACK

BACK dist
BK dist

Moves the turtle backward, i.e., exactly opposite to the direction that it's facing, by the specified
distance. (The heading of the turtle does not change.)

LEFT

LEFT degrees
LT degrees

Turns the turtle counterclockwise by the specified angle, measured in degrees (1/360 of a circle).

RIGHT

RIGHT degrees
RT degrees

Turns the turtle clockwise by the specified angle, measured in degrees (1/360 of a circle).

SETPOS

SETPOS pos

Moves the turtle to an absolute screen position. The argument is a list of two numbers, the X
and Y coordinates.

SETXY

SETXY xcor ycor

Moves the turtle to an absolute screen position. The two arguments are numbers, the X and Y
coordinates.

SETX

SETX xcor

Moves the turtle horizontally from its old position to a new absolute horizontal coordinate. The
argument is the new X coordinate.

SETY

SETY ycor

Moves the turtle vertically from its old position to a new absolute vertical coordinate. The
argument is the new Y coordinate.

HOME

HOME

Moves the turtle to the center of the screen. Equivalent to SETPOS [0 0].

SETHEADING

SETHEADING degrees
SETH degrees

Turns the turtle to a new absolute heading. The argument is a number, the heading in degrees
clockwise from the positive Y axis.

ARC

ARC angle radius

The turtle does not move in this command. It draws an arc (part of a circle) based on the turtle
heading, turtle position and the given arguments. The arc starts at the rear of the turtle heading.
The size is based on the radius. The current turtle position will be at the center of the arc. Arc
will also follow wrap/fence/windows modes. ARC 360 radius will of course draw a circle.

TURTLE MOTION QUERIES

POS
XCOR
YCOR
HEADING
TOWARDS
SCRUNCH

POS

POS

Outputs the turtle's current position, as a list of two numbers, the X and Y coordinates.

XCOR

XCOR (library procedure)

Outputs a number, the turtle's X coordinate.

YCOR

YCOR (library procedure)

Outputs a number, the turtle's Y coordinate.

HEADING

HEADING

Outputs a number, the turtle's heading in degrees.

TOWARDS

TOWARDS pos

Outputs a number, the heading at which the turtle should be facing so that it would point from its
current position to the position given as the argument.

SCRUNCH

SCRUNCH

(not supported completely in MswLogo yet)

Outputs a list containing two numbers, the X and Y scrunch factors, as used by SETSCRUNCH.
(But note that SETSCRUNCH takes two numbers as inputs, not one list of numbers.)

TURTLE AND WINDOW CONTROL

SHOWTURTLE
HIDETURTLE
CLEAN
CLEARSCREEN
WRAP
WINDOW
FENCE
FILL
LABEL
SETTEXTFONT
SETTEXTSIZE
SETTEXTWEIGHT
TEXTSCREEN
FULLSCREEN
SPLITSCREEN
SETSCRUNCH
REFRESH
NOREFRESH
ZOOM
SCROLLX
SCROLLY
SETFOCUS
GETFOCUS
ICON
UNICON

SHOWTURTLE

SHOWTURTLE
ST

Makes the turtle visible.

HIDETURTLE

HIDETURTLE
HT

Makes the turtle invisible. It's a good idea to do this while you're in the middle of a complicated
drawing, because hiding the turtle speeds up the drawing substantially.

CLEAN

CLEAN

Erases all lines that the turtle has drawn on the graphics window. The turtle's state (position,
heading, pen mode, etc.) is not changed.

CLEARSCREEN

CLEARSCREEN
CS

Erases the graphics window and sends the turtle to its initial position and heading. Like HOME
and CLEAN together.

WRAP

WRAP

Tells the turtle to enter wrap mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will "wrap around" and reappear at the opposite edge of the
window. The top edge wraps to the bottom edge, while the left edge wraps to the right edge.
(So the window is topologically equivalent to a torus.) This is the turtle's initial mode.
Compare WINDOW and FENCE.

WINDOW

WINDOW

Tells the turtle to enter window mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will move off screen. The visible graphics window is
considered as just part of an infinite graphics plane; the turtle can be anywhere on the plane. (If
you lose the turtle, HOME will bring it back to the center of the window.) Compare WRAP and
FENCE.

FENCE

FENCE

Tells the turtle to enter fence mode: From now on, if the turtle is asked to move past the
boundary of the graphics window, it will move as far as it can and then stop at the edge with an
"out of bounds" error message. Compare WRAP and WINDOW.

FILL

FILL

Fills in a region of the graphics window containing the turtle and bounded by lines that have
been drawn earlier. This is not portable; it doesn't work for all machines, and may not work
exactly the same way on different machines.

LABEL

LABEL text

The input, which may be a word or a list, is printed on the screen. If the object is a list, any
sub-lists are delimited by square brackets, but the entire object is not delimited by brackets. You
can print any logo object (numbers, lists and strings). Note that the handle of the string (the
origin) is the top-left corner of the string. Another thing to be aware of is that the capabilities of
the text changes depending on the device (screen or printer), the size, the turtle heading
(direction) and the font. It other words sometimes the text can be drawn at the turtle heading
and sometimes it cannot. Sometimes what is on the screen will not be exactly what you print.

The size of the text is determined by the command SETTEXTSIZE.
The weight of (how bold) the text is determined by the command SETTEXTWEIGHT.
The color of the text is determined by SETPENCOLOR.
The position of the text is determined by the location of the turtle.
The font of the text is determined by SETTEXTFONT.
The angle of the text is determined by the heading (direction) of the turtle.

SETTEXTFONT

SETTEXTFONT font

The input, must be a word or list that describes a font. A font determines what your characters
look like on the screen. The available fonts depend on you your computer.

Note, if you mistype the font name textfont will list what fonts are available.

SETTEXTSIZE

SETTEXTSIZE size

The input, which must be a number, is used to determine the size of text drawn on the screen
with textdraw.

SETTEXTWEIGHT

SETTEXTWEIGHT weight

The input, which must be a number, is used to determine the weight of (how bold) the text drawn
on the screen with textdraw will be. A weight of 400 is considered normal text.

TEXTSCREEN

TEXTSCREEN
TS

(not supported under MswLogo yet)

Rearranges the size and position of windows to maximize the space available in the text window
(the window used for interaction with Logo). The details differ among machines. Compare
SPLITSCREEN and FULLSCREEN.

FULLSCREEN

FULLSCREEN
FS

(not supported under MswLogo yet)

Rearranges the size and position of windows to maximize the space available in the graphics
window. The details differ among machines. Compare SPLITSCREEN and TEXTSCREEN.

In the DOS version, switching from fullscreen to splitscreen loses the part of the picture that's
hidden by the text window. Also, since there must be a text window to allow printing (including
the printing of the Logo prompt), Logo automatically switches from fullscreen to splitscreen
whenever anything is printed. [This design decision follows from the scarcity of memory, so
that the extra memory to remember an invisible part of a drawing seems too expensive.]

SPLITSCREEN

SPLITSCREEN
SS

(not supported under MswLogo yet)

Rearranges the size and position of windows to allow some room for text interaction while also
keeping most of the graphics window visible. The details differ among machines. Compare
TEXTSCREEN and FULLSCREEN.

SETSCRUNCH

SETSCRUNCH xscale yscale

(not supported under MswLogo yet)

Adjusts the aspect ratio and scaling of the graphics display. After this command is used, all
further turtle motion will be adjusted by multiplying the horizontal and vertical extent of the
motion by the two numbers given as inputs. For example, after the instruction "SETSCRUNCH
2 1" motion at a heading of 45 degrees will move twice as far horizontally as vertically. If your
squares don't come out square, try this. (Alternatively, you can deliberately misadjust the aspect
ratio to draw an ellipse.)

For Unix machines and Macintoshes, both scale factors are initially 1. For DOS machines, the
scale factors are initially set according to what the hardware claims the aspect ratio is, but the
hardware sometimes lies.

REFRESH

REFRESH

(not supported under MswLogo yet)

Tells Logo to remember the turtle's motions so that they can be reconstructed in case the graphics
window is overlayed. The effectiveness of this command may depend on the machine used.

NOREFRESH

NOREFRESH

(not supported under MswLogo yet)

Tells Logo not to remember the turtle's motions. This will make drawing faster, but prevents
recovery if the window is overlayed.

ZOOM

ZOOM scale

This command allows LOGO to control the scale of the "Screen" window. The argument is the
amount to zoom (scale) by. A number greater than 1.0 makes things bigger (e.g. 2.0 makes it 2
times bigger), a number smaller than 1.0 makes things smaller (0.5 makes it 1/2 as big). If an
existing image is on the screen when you zoom it will be stretched or squeezed (this takes time
by the way) according to the zoom (it may look a little jagged). If you "draw" while zoomed
things will not be as jagged.

Even though things may appear jagged LOGO remembers everything as if zoom was normal
(1.0) and only prints in normal. Once you return to zoom of 1.0 your image will not be
stretched or squeezed to fit again. In other words in a zoom of 1.0 lines never get jagged even if
you drew it at zoom 0.5 or 2.0.

NOTE: Zoom works best if you choose a zoom that is a "power" of two. For example
2, 4, 8, 1/2 (0.5), 1/4 (0.25), 1/8 (0.125) etc.

SCROLLX

SCROLLX deltax

This command allows LOGO to control the horizontal scroller of the "Screen" window. The
argument is the amount to change the scroller by (delta). A positive number scrolls to the right
and negative number scrolls to the left.

Try this:

repeat 10 [scrollx 10]

SCROLLY

SCROLLY deltay

This command allows LOGO to control the vertical scroller of the "Screen" window. The
argument is the amount to change the scroller by (delta). A positive number scrolls down and
negative number scrolls to the up.

Try this:

repeat 10 [scrolly 10]

SETFOCUS

SETFOCUS caption

This command allows LOGO to control which window is to have focus (is selected). The
window desired is specified by its caption (or title). See also SETFOCUS.

caption:(LIST) Is the caption on the Window you wish to set focus to.

Note, the "caption" is not the same as the window's "name" used in the WINDOWS functions.

GETFOCUS

GETFOCUS

This command will output the caption (title) of the window with the current focus (currently
selected). See also SETFOCUS.

output:(LIST) Will be the caption (title) of window with current focus.

ICON

ICON caption

This command allows LOGO to icon a window (if iconable) with the given caption (title). See
also UNICON.

caption:(LIST) Is the caption on the Window you wish to ICON.

Note, the "caption" is not the same as the window's "name" used in the WINDOWS functions.

UNICON

UNICON caption

This command allows LOGO to unicon a window (if iconable) with the given caption (title). See
also ICON.

caption:(LIST) Is the caption on the Window you wish to UNICON.

USING COLOR

Several commands (SETPENCOLOR, SETFLOODCOLOR, SETSCREENCOLOR) exist in
Logo to specify a Red Green Blue intensities of color. Each input represents how much Red,
Green and Blue you want in the color. Each input has a range of 0-255. By mixing different
amounts of colors you can create 16.7 million different colors.

If your running with a 256 color Windows Driver for your monitor you will get "real" colors.
The colors are stored in a table called a palette. The palette has room for 256 colors (chosen
from 16.7 possibilities). You can tell if you are running in 256 color mode (have a palette) by
popping up the STATUS window and looking at the palette usage. If it shows "N/A" (Not
Applicable) you are not running a 256 (or more) Windows driver. See the CLEARPALETTE
command for more details about managing the palette.

If you are running with 16 (or less) color Windows Driver for your monitor Windows will
simulate all the colors by mixing (dithering) the 16 (or less) colors. If the SETPENSIZE is too
narrow (1) Windows cannot mix (dither) colors. Windows does not mix (dither) colors on Fonts
either. If your hardware can support a 256 Windows Driver you should look into loading the
appropriate Driver. The Documentation with your Graphics card explains the capabilities and
how to load new Drivers. MswLogo is fun in any mode but it's even more fun in 256 color
mode. You can load 256 color Bitmaps and do some incredible things with them.

Example of setting some common pen colors:

setpencolor 000 000 000 black
setpencolor 255 255 255 white
setpencolor 128 128 128 gray
setpencolor 255 000 000 Red
setpencolor 000 255 000 Green
setpencolor 000 000 255 Blue

Note that when running 256 color mode with a palette that several advantages and disadvantages
occur:

Printing a 256 color image on a mono printer will be less pleasing than printing in 16 color
mode. This is because no "dithering" (mixing dots) is used in 256 color mode.

Running in 256 color mode is slower and takes more memory and may not be possible on some
smaller machines or machines with limited video capabilities.

Running in 256 color does give much more pleasant colors and even allows manipulation of 256
color .BMP files.

TURTLE AND WINDOW QUERIES

SHOWNP

SHOWNP

SHOWNP

Outputs TRUE if the turtle is shown (visible), FALSE if the turtle is hidden. See
SHOWTURTLE and HIDETURTLE.

PEN CONTROL

The turtle carries a pen that can draw pictures. At any time the pen can be UP (in which case
moving the turtle does not change what's on the graphics screen) or DOWN (in which case the
turtle leaves a trace). If the pen is down, it can operate in one of three modes: PAINT (so that it
draws lines when the turtle moves), ERASE (so that it erases any lines that might have been
drawn on or through that path earlier), or REVERSE (so that it inverts the status of each point
along the turtle's path).

PENDOWN
PENUP
PENPAINT
PENERASE
PENREVERSE
SETPENCOLOR
SETFLOODCOLOR
SETSCREENCOLOR
SETPENSIZE
SETPENPATTERN
SETPEN
CLEARPALETTE

PENDOWN

PENDOWN
PD

Sets the pen's position to DOWN, without changing its mode.

PENUP

PENUP
PU

Sets the pen's position to UP, without changing its mode.

PENPAINT

PENPAINT
PPT

Sets the pen's position to DOWN and mode to PAINT.

PENERASE

PENERASE
PE

Sets the pen's position to DOWN and mode to ERASE.

PENREVERSE

PENREVERSE
PX

Sets the pen's position to DOWN and mode to REVERSE.

SETPENCOLOR

SETPENCOLOR colorred colorgreen colorblue

Sets the pen color. The pen color effects drawing text (LABEL) and drawing any line with the
turtle (such as FORWARD). For an explanation of the arguments see USING COLOR.

SETFLOODCOLOR

SETFLOODCOLOR colorred colorgreen colorblue

Sets the flood color. The flood color effects FILL and BITBLOCK commands. For an
explanation of the arguments see USING COLOR.

SETSCREENCOLOR

SETSCREENCOLOR colorred colorgreen colorblue

Sets the screen color. The screen color immediately sets the screen background color. For an
explanation of the arguments see USING COLOR.

SETPENSIZE

SETPENSIZE size

Set hardware-dependent pen characteristics. These commands are not guaranteed compatible
between implementations on different machines. "size" is a list of two members, width and
height. MswLogo only uses one of them. So just set them both to the same value.

Example:

setpensize [5 5]

SETPENPATTERN

SETPENPATTERN pattern

(not supported under MswLogo yet)

Set hardware-dependent pen characteristics. These commands are not guaranteed compatible
between implementations on different machines.

SETPEN

SETPEN list (library procedure)

Sets the pen's position, mode, and hardware-dependent characteristics according to the
information in the input list, which should be taken from an earlier invocation of PEN.

CLEARPALETTE

CLEARPALETTE

This command clears the color palette. The color palette is filled by using the
SETPENCOLOR, SETSCREENCOLOR, and SETFLOODCOLOR commands. The palette is
only supported when windows is in 256 color mode (see USING COLOR). Once you run out of
colors windows will choose the closest match. For example if the command (repeat 256
[setpencolor repcount 0 0]) is issued it would fill the palette with 256 shades of red. At this
point the palette would now be full. If you now wanted 256 shades of green they would NOT
be granted (and matched to red). In order for them to be granted you have to let go of the 256
shades of red. This is done by "clearing the palette".

If you want a wide range of colors then select a wide range into the palette. For example the
following would give you 216 colors covering a wide range. Once the few colors, left in the
palette, are used, windows will have something reasonable to match further requests to (unlike
the example above in which only shades of reds could be matched to).

repeat 6~
 [~
 make "red repcount*40~
 repeat 6~
 [~
 make "green repcount*40~
 repeat 6~
 [~
 make "blue repcount*40~
 pencolor :red :green :blue~
]~
]~
]

Note also that loading in .BMP (BITLOAD) files uses up colors in the palette. Which again can
be cleared using clearpalette. Clearing the screen does NOT clear the palette.

PEN QUERIES

PENDOWNP
PENMODE
PENCOLOR
FLOODCOLOR
SCREENCOLOR
PENSIZE
PENPATTERN
PEN

PENDOWNP

PENDOWNP

Outputs TRUE if the pen is down, FALSE if it's up.

PENMODE

PENMODE

Outputs one of the words PAINT, ERASE, or REVERSE according to the current pen mode.

PENCOLOR

PENCOLOR

Output pen color information.

FLOODCOLOR

FLOODCOLOR

Output flood color information.

SCREENCOLOR

SCREENCOLOR

Output screen color information.

PENSIZE

PENSIZE

Output pen size information.

PENPATTERN

PENPATTERN

Output hardware-specific pen information.

PEN

PEN (library procedure)

Outputs a list containing the pen's position, mode, and hardware-specific characteristics, for use
by SETPEN.

WORKSPACE MANAGEMENT

PROCEDURE DEFINITION
VARIABLE DEFINITION
PROPERTY LISTS
PREDICATES (Workspace)
QUERIES
INSPECTION
WORKSPACE CONTROL

PROCEDURE DEFINITION

TO
END
DEFINE
TEXT
FULLTEXT
COPYDEF

TO

TO procname :input1 :input2 ... (special form)

Command that prepares Logo to accept a procedure definition. The procedure will be named
"procname" and there must not already be a procedure by that name. The inputs will be called
"input1", "input2", etc. Any number of inputs are allowed, including none. Names of
procedures and inputs are case-insensitive.

Unlike every other Logo procedure, TO takes as its inputs the actual words typed in the
instruction line, as if they were all quoted, rather than the results of evaluating expressions to
provide the inputs. (That's what "special form" means.)

This version of Logo allows variable numbers of inputs to a procedure. Every procedure has a
MINIMUM, DEFAULT, and MAXIMUM number of inputs. (The latter can be infinite.)

The MINIMUM number of inputs is the number of required inputs, which must come first. A
required input is indicated by the

:inputname

notation.

After all the required inputs can be zero or more optional inputs, represented by the following
notation:

[:inputname default.value.expression]

When the procedure is invoked, if actual inputs are not supplied for these optional inputs, the
default value expressions are evaluated to set values for the corresponding input names. The
inputs are processed from left to right, so a default value expression can be based on earlier
inputs. Example:

to proc :inlist [:startvalue first :inlist]

If the procedure is invoked by saying

proc [a b c]

then the variable INLIST will have the value [A B C] and the variable STARTVALUE will have
the value A. If the procedure is invoked by saying

(proc [a b c] "x)

then INLIST will have the value [A B C] and STARTVALUE will have the value X.

After all the required and optional input can come a single "rest" input, represented by the
following notation:

[:inputname]

This is a rest input rather than an optional input because there is no default value expression.
There can be at most one rest input. When the procedure is invoked, the value of this input will
be a list containing all of the actual inputs provided that were not used for required or optional
inputs. Example:

to proc :in1 [:in2 "foo] [:in3]

If this procedure is invoked by saying

proc "x

then IN1 has the value X, IN2 has the value FOO, and IN3 has the value [] (the empty list). If
it's invoked by saying

(proc "a "b "c "d)

then IN1 has the value A, IN2 has the value B, and IN3 has the value [C D].

The MAXIMUM number of inputs for a procedure is infinite if a rest input is given; otherwise, it
is the number of required inputs plus the number of optional inputs.

The DEFAULT number of inputs for a procedure, which is the number of inputs that it will
accept if its invocation is not enclosed in parentheses, is ordinarily equal to the minimum
number. If you want a different default number you can indicate that by putting the desired
default number as the last thing on the TO line. example:

to proc :in1 [:in2 "foo] [:in3] 3

This procedure has a minimum of one input, a default of three inputs, and an infinite maximum.

Logo responds to the TO command by entering procedure definition mode. The prompt
character changes from "?" to ">" (pops up a dialog box in MswLogo) and whatever instructions
you type become part of the definition until you type a line containing only the word END.

END

END (special form)

This is not really a command. It is to let you to depict the END of a procedure. See also
TO.

DEFINE

DEFINE procname text

Command that defines a procedure with name "procname" and text "text". If there is already a
procedure with the same name, the new definition replaces the old one. The text input must be a
list whose members are lists. The first member is a list of inputs; it looks like a TO line but
without the word TO, without the procedure name, and without the colons before input names.
In other words, the members of this first sublist are words for the names of required inputs and
lists for the names of optional or rest inputs. The remaining sublists of the text input make up
the body of the procedure, with one sublist for each instruction line of the body. (There is no
END line in the text input.) It is an error to redefine a primitive procedure unless the variable
REDEFP has the value TRUE.

TEXT

TEXT procname

Outputs the text of the procedure named "procname" in the form expected by DEFINE: a list of
lists, the first of which describes the inputs to the procedure and the rest of which are the lines of
its body. The text does not reflect formatting information used when the procedure was defined,
such as continuation lines and extra spaces.

FULLTEXT

FULLTEXT procname

Outputs a representation of the procedure "procname" in which formatting information is
preserved. If the procedure was defined with TO, EDIT, or LOAD, then the output is a list of
words. Each word represents one entire line of the definition in the form output by
READWORD, including extra spaces and continuation lines. The last element of the output
represents the END line. If the procedure was defined with DEFINE, then the output is a list of
lists. If these lists are printed, one per line, the result will look like a definition using TO.
Note: the output from FULLTEXT is not suitable for use as input to DEFINE!

COPYDEF

COPYDEF newname oldname

Command that makes "newname" a procedure identical to "oldname". The latter may be a
primitive. If "newname" was already defined, its previous definition is lost. If "newname" was
already a primitive, the redefinition is not permitted unless the variable REDEFP has the value
TRUE. Definitions created by COPYDEF are not saved by SAVE; primitives are never saved,
and user-defined procedures created by COPYDEF are buried. (You are likely to be confused if
you PO or POT a procedure defined with COPYDEF because its title line will contain the old
name. This is why it's buried.)

Note: dialects of Logo differ as to the order of inputs to COPYDEF. This dialect uses "MAKE
order," not "NAME order."

VARIABLE DEFINITION

MAKE
NAME
LOCAL
THING

MAKE

MAKE varname value

Command that assigns the value "value" to the variable named "varname", which must be a
word. Variable names are case-insensitive. If a variable with the same name already exists, the
value of that variable is changed. If not, a new global variable is created.

NAME

NAME value varname (library procedure)

Command that is the same as MAKE but with the inputs in reverse order.

LOCAL

LOCAL varname
LOCAL varnamelist
(LOCAL varname1 varname2 ...)

Command that accepts as inputs one or more words, or a list of words. A variable is created for
each of these words, with that word as its name. The variables are local to the currently running
procedure. Logo variables follow dynamic scope rules; a variable that is local to a procedure is
available to any sub procedure invoked by that procedure. The variables created by LOCAL
have no initial value; they must be assigned a value (e.g., with MAKE) before the procedure
attempts to read their value.

THING

THING varname
:quoted.varname

Outputs the value of the variable whose name is the input. If there is more than one such
variable, the innermost local variable of that name is chosen. The colon notation is an
abbreviation not for THING but for the combination

thing "

so that :FOO means THING "FOO.

PROPERTY LISTS

Note: Names of property lists are always case-insensitive. Names of individual properties are
case-sensitive or case-insensitive depending on the value of CASEIGNOREDP, which is TRUE
by default.

PPROP
GPROP
REMPROP
PLIST

PPROP

PPROP plistname propname value

Command that adds a property to the "plistname" property list with name "propname" and value
"value".

GPROP

GPROP plistname propname

Outputs the value of the "propname" property in the "plistname" property list, or the empty list if
there is no such property.

REMPROP

REMPROP plistname propname

Command that removes the property named "propname" from the property list named
"plistname".

PLIST

PLIST plistname

Outputs a list whose odd-numbered elements are the names, and whose even-numbered elements
are the values, of the properties in the property list named "plistname". The output is a copy of
the actual property list; changing properties later will not magically change the list output by
PLIST.

PREDICATES (Workspace)

PROCEDUREP
PRIMITIVEP
DEFINEDP
NAMEP

PROCEDUREP

PROCEDUREP name

Outputs TRUE if the input is the name of a procedure.

PRIMITIVEP

PRIMITIVEP name

Outputs TRUE if the input is the name of a primitive procedure (one built into Logo). Note that
some of the procedures described in this document are library procedures, not primitives.

DEFINEDP

DEFINEDP name

Outputs TRUE if the input is the name of a user-defined procedure, including a library
procedure. (However, Logo does not know about a library procedure until that procedure has
been invoked.)

NAMEP

NAMEP name

Outputs TRUE if the input is the name of a variable.

QUERIES

CONTENTS
BURIED
PROCEDURES
NAMES
PLISTS
NAMELIST
PLLIST

CONTENTS

CONTENTS

Outputs a "contents list," i.e., a list of three lists containing names of defined procedures,
variables, and property lists respectively. This list includes all unburied named items in the
workspace.

BURIED

BURIED

Outputs a contents list including all buried named items in the workspace.

PROCEDURES

PROCEDURES

Outputs a list of the names of all unburied user-defined procedures in the workspace. Note that
this is a list of names, not a contents list. (However, procedures that require a contents list as
input will accept this list.)

NAMES

NAMES

Outputs a contents list consisting of an empty list (indicating no procedure names) followed by a
list of all unburied variable names in the workspace.

PLISTS

PLISTS

Outputs a contents list consisting of two empty lists (indicating no procedures or variables)
followed by a list of all unburied property lists in the workspace.

NAMELIST

NAMELIST varname (library procedure)
NAMELIST varnamelist

Outputs a contents list consisting of an empty list followed by a list of the name or names given
as input. This is useful in conjunction with workspace control procedures that require a contents
list as input.

PLLIST

PLLIST plname (library procedure)
PLLIST plnamelist

Outputs a contents list consisting of two empty lists followed by a list of the name or names
given as input. This is useful in conjunction with workspace control procedures that require a
contents list as input.

Note: All procedures whose input is indicated as "contentslist" will accept a single word (taken
as a procedure name), a list of words (taken as names of procedures), or a list of three lists as
described under CONTENTS above.

INSPECTION

PO
POALL
POPS
PONS
POPLS
PON
POPL
POT
POTS

PO

PO contentslist

Command that prints to the write stream the definitions of all procedures, variables, and property
lists named in the input contents list.

POALL

POALL (library procedure)

Command that prints all unburied definitions in the workspace. Abbreviates PO CONTENTS.

POPS

POPS (library procedure)

Command that prints the definitions of all unburied procedures in the workspace. Abbreviates
PO PROCEDURES.

PONS

PONS (library procedure)

Command that prints the definitions of all unburied variables in the workspace. Abbreviates PO
NAMES.

POPLS

POPLS (library procedure)

Command that prints the contents of all unburied property lists in the workspace. Abbreviates
PO PLISTS.

PON

PON varname (library procedure)
PON varnamelist

Command that prints the definitions of the named variable(s). Abbreviates PO NAMELIST
varname(list).

POPL

POPL plname (library procedure)
POPL plnamelist

Command that prints the definitions of the named property list(s). Abbreviates PO PLLIST
plname(list).

POT

POT contentslist

Command that prints the title lines of the named procedures and the definitions of the named
variables and property lists. For property lists, the entire list is shown on one line instead of as a
series of PPROP instructions as in PO.

POTS

POTS (library procedure)

Command that prints the title lines of all unburied procedures in the workspace. Abbreviates
POT PROCEDURES.

WORKSPACE CONTROL

ERASE
ERALL
ERPS
ERNS
ERPLS
ERN
ERPL
BURY
BURYALL
BURYNAME
UNBURY
UNBURYALL
UNBURYNAME
TRACE
UNTRACE
STEP
UNSTEP
EDIT
EDALL
EDPS
EDNS
EDPLS
EDN
EDPL
SAVE
SAVEL
LOAD
NOSTATUS
STATUS

ERASE

ERASE contentslist
ER contentslist

Command that erases from the workspace the procedures, variables, and property lists named in
the input. Primitive procedures may not be erased unless the variable REDEFP has the value
TRUE.

ERALL

ERALL (library procedure)

Command that erases all unburied procedures, variables, and property lists from the workspace.
Abbreviates ERASE CONTENTS.

ERPS

ERPS (library procedure)

Command that erases all unburied procedures from the workspace. Abbreviates ERASE
PROCEDURES.

ERNS

ERNS (library procedure)

Command that erases all unburied variables from the workspace. Abbreviates ERASE NAMES.

ERPLS

ERPLS (library procedure)

Command that erases all unburied property lists from the workspace. Abbreviates ERASE
PLISTS.

ERN

ERN varname (library procedure)
ERN varnamelist

Command that erases from the workspace the variable(s) named in the input. Abbreviates
ERASE NAMELIST varname(list).

ERPL

ERPL plname (library procedure)
ERPL plnamelist

Command that erases from the workspace the property list(s) named in the input. Abbreviates
ERASE PLLIST plname(list).

BURY

BURY contentslist

Command that buries the procedures, variables, and property lists named in the input. A buried
item is not included in the lists output by CONTENTS, PROCEDURES, VARIABLES , and
PLISTS, but is included in the list output by BURIED. By implication, buried things are not
printed by POALL or saved by SAVE.

BURYALL

BURYALL (library procedure)

Command that abbreviates BURY CONTENTS.

BURYNAME

BURYNAME varname (library procedure)
BURYNAME varnamelist

Command that abbreviates BURY NAMELIST varname(list).

UNBURY

UNBURY contentslist

Command that unburies the procedures, variables, and property lists named in the input. That
is, the named items will be returned to view in CONTENTS, etc.

UNBURYALL

UNBURYALL (library procedure)

Command that abbreviates UNBURY BURIED.

UNBURYNAME

UNBURYNAME varname (library procedure)
UNBURYNAME varnamelist

Command that abbreviates UNBURY NAMELIST varname(list).

TRACE

TRACE contentslist

Command that marks the named items for tracing. A message is printed whenever a traced
procedure is invoked, giving the actual input values, and whenever a traced procedure STOPs or
OUTPUTs. A message is printed whenever a new value is assigned to a traced variable using
MAKE. A message is printed whenever a new property is given to a traced property list using
PPROP.

UNTRACE

UNTRACE contentslist

Command that turns off tracing for the named items.

STEP

STEP contentslist

Command that marks the named items for stepping. Whenever a stepped procedure is invoked,
each instruction line in the procedure body is printed before being executed, and Logo waits for
the user to type a newline at the terminal. A message is printed whenever a stepped variable
name is "shadowed" because a local variable of the same name is created either as a procedure
input or by the LOCAL command.

UNSTEP

UNSTEP contentslist

Command that turns off stepping for the named items.

EDIT

EDIT contentslist
ED contentslist
(EDIT)
(ED)

Command that edits the definitions of the named item(s), using the Logo editor. When you exit
the editor, Logo loads the revised definitions and modifies the workspace accordingly. Multiple
Edit sessions are supported. But be careful of having multiple edits going that include the same
definition. The last Editor Exited (and saved) is what takes precedence.

If an error occurs when Logo "loads" in your edit you will be prompted to reenter the Editor.
This situation commonly occurs when a continuation "~" is missing within a list. Also realize
that deleting a definition from the Editor does not remove it from the workspace. You must exit
the Editor and issue an ERASE to remove it.

Logo's Editor supports the Clipboard. The Clipboard is where most Windows application store
data during cut and paste operations. This means that when you cut text from an application,
such as Notepad, it can be pasted into Logo's Editor (the reverse is also true). Even Windows-
Help supports the Clipboard. This means you can copy examples in this document directly to
the editor (see HELP command).

But there's more, the Input Box also supports the Clipboard. This means you can test code that
your not sure of or copy code already executed to the Editor. Currently only one line of text is
supported between the Input Box and the Clipboard. Note that the Input Box does not have an
Edit Menu like the Editor. You must use the "Short-Cut" keys for the desired actions. See the
Edit Menu in the Editor for their definitions.

Logo's Editor is also features context sensitive Help. If you select a keyword (such as
FORWARD) in the Editor (double-click works best) you can ask the Editor to look up the
keyword without going through the Help Menu followed by a Search and so on. You simple ask
by clicking the right button on the mouse (abbreviations are not supported yet).

EDALL

EDALL (library procedure)

Command that abbreviates EDIT CONTENTS.

EDPS

EDPS (library procedure)

Command that abbreviates EDIT PROCEDURES.

EDNS

EDNS (library procedure)

Command that abbreviates EDIT NAMES.

EDPLS

EDPLS (library procedure)

Command that abbreviates EDIT PLISTS.

EDN

EDN varname (library procedure)
EDN varnamelist

Command that abbreviates EDIT NAMELIST varname(list).

EDPL

EDPL plname (library procedure)
EDPL plnamelist

Command that abbreviates EDIT PLLIST plname(list).

SAVE

SAVE filename

Command that saves the definitions of all unburied procedures, variables, and property lists in
the named file. Equivalent to

to save :filename
local "oldwriter
make "oldwriter writer
openwrite :filename
setwrite :filename
poall
setwrite :oldwriter
close :filename
end

SAVEL

SAVEL contentslist filename (library procedure)

Command that saves the definitions of the procedures, variables, and property lists specified by
"contentslist" to the file named "filename".

LOAD

LOAD filename

Command that reads instructions from the named file and executes them. The file can include
procedure definitions with TO, and these are accepted even if a procedure by the same name
already exists. If the file assigns a list value to a variable named STARTUP, then that list is run
as an instruction list after the file is loaded.

NOSTATUS

NOSTATUS

This command has the same effect as hitting the NOSTATUS BUTTON. That is, it kills the
popup status window. See also STATUS command.

STATUS

STATUS

This command has the same effect as hitting the STATUS BUTTON. That is, it pops up the
status window. See also NOSTATUS command.

CONTROL STRUCTURES

Note: in the following descriptions, an "instructionlist" can be a list or a word. In the latter case,
the word is parsed into list form before it is run. Thus, RUN READWORD or RUN
READLIST will work. The former is slightly preferable because it allows for a continued line
(with ~) that includes a comment (with ;) on the first line.

CONTROL COMMANDS
TEMPLATE-BASED ITERATION

CONTROL COMMANDS

RUN
RUNRESULT
REPEAT
REPCOUNT
IF
IFELSE
TEST
IFTRUE
IFFALSE
TRUE
FALSE
STOP
OUTPUT
CATCH
THROW
ERROR
PAUSE
CONTINUE
YIELD
NOYIELD
SETCURSORWAIT
HALT
WAIT
BYE
.MAYBEOUTPUT
IGNORE
`
FOR
DO.WHILE
WHILE
DO.UNTIL
UNTIL
GO

RUN

RUN instructionlist

Command or operation that runs the Logo instructions in the input list; outputs if the list contains
an expression that outputs.

RUNRESULT

RUNRESULT instructionlist

Runs the instructions in the input; outputs an empty list if those instructions produce no output,
or a list whose only member is the output from running the input instructionlist. Useful for
inventing command-or-operation control structures:

local "result
make "result runresult [something]
if emptyp :result [stop]
output first :result

REPEAT

REPEAT num instructionlist

Command that runs the "instructionlist" repeatedly, "num" times.

REPCOUNT

REPCOUNT

This operation may be used only within the range of a REPEAT command. It outputs the
number of repetitions which have been done, including the current one. That is, it outputs 1 the
first time through, 2 the second time, and so on.

IF

IF tf instructionlist
(IF tf instructionlist1 instructionlist2)

Command or operation where if the first input has the value TRUE, then IF runs the second
input. If the first input has the value FALSE, then IF does nothing. (If given a third input, IF
acts like IFELSE, as described below.) It is an error if the first input is not either TRUE or
FALSE.

For compatibility with earlier versions of Logo, if an IF instruction is not enclosed in
parentheses, but the first thing on the instruction line after the second input expression is a literal
list (i.e., a list in square brackets), the IF is treated as if it were IFELSE, but a warning message
is given. If this aberrant IF appears in a procedure body, the warning is given only the first time
the procedure is invoked in each Logo session.

IFELSE

IFELSE tf instructionlist1 instructionlist2

Command or operation where if the first input has the value TRUE, then IFELSE runs the
second input. If the first input has the value FALSE, then IFELSE runs the third input.
IFELSE outputs a value if the instructionlist contains an expression that outputs a value.

TEST

TEST tf

Command that remembers its input, which must be TRUE or FALSE, for use by later IFTRUE or
IFFALSE instructions. The effect of TEST is local to the procedure in which it is used; any
corresponding IFTRUE or IFFALSE must be in the same procedure or a subprocedure.

IFTRUE

IFTRUE instructionlist
IFT instructionlist

Command that runs its input if the most recent TEST instruction had a TRUE input. The TEST
must have been in the same procedure or a superprocedure.

IFFALSE

IFFALSE instructionlist
IFF instructionlist

Command that runs its input if the most recent TEST instruction had a FALSE input. The TEST
must have been in the same procedure or a superprocedure.

TRUE

TRUE (special form)

This is a special word to indicate a positive condition.

FALSE

FALSE (special form)

This is a special word to indicate a negative condition.

STOP

STOP

Command that ends the running of the procedure in which it appears. Control is returned to the
context in which that procedure was invoked. The stopped procedure does not output a value.

OUTPUT

OUTPUT value

Command that ends the running of the procedure in which it appears. That procedure outputs
the value "value" to the context in which it was invoked. Don't be confused: OUTPUT itself is a
command, but the procedure that invokes OUTPUT is an operation.

CATCH

CATCH tag instructionlist

Command or operation that runs its second input. Outputs if that instructionlist outputs. If,
while running the instructionlist, a THROW instruction is executed with a tag equal to the first
input (case-insensitive comparison), then the running of the instructionlist is terminated
immediately. In this case the CATCH outputs if a value input is given to THROW. The tag
must be a word.

If the tag is the word ERROR, then any error condition that arises during the running of the
instructionlist has the effect of THROW "ERROR instead of printing an error message and
returning to toplevel. The CATCH does not output if an error is caught. Also, during the
running of the instructionlist, the variable ERRACT is temporarily unbound. (If there is an
error while ERRACT has a value, that value is taken as an instructionlist to be run after printing
the error message. Typically the value of ERRACT, if any, is the list [PAUSE].)

THROW

THROW tag
(THROW tag value)

Command that must be used within the scope of a CATCH with an equal tag. Ends the running
of the instructionlist of the CATCH. If THROW is used with only one input, the corresponding
CATCH does not output a value. If THROW is used with two inputs, the second provides an
output for the CATCH.

THROW "TOPLEVEL can be used to terminate all running procedures and interactive pauses,
and return to the toplevel instruction prompt. Typing the system interrupt character (normally
^C) has the same effect (or HALT button in MswLogo).

THROW "ERROR can be used to generate an error condition. If the error is not caught, it prints
a message (THROW "ERROR) with the usual indication of where the error (in this case the
THROW) occurred. If a second input is used along with a tag of ERROR, that second input is
used as the text of the error message instead of the standard message. Also, in this case, the
location indicated for the error will be, not the location of the THROW, but the location where
the procedure containing the THROW was invoked. This allows user-defined procedures to
generate error messages as if they were primitives. Note: in this case the corresponding CATCH
"ERROR, if any, does not output, since the second input to THROW is not considered a return
value.

THROW "SYSTEM immediately leaves Logo, returning to the operating system, without
printing the usual parting message and without deleting any editor temporary file written by
EDIT.

ERROR

ERROR

Outputs a list describing the error just caught, if any. If there was not an error caught since the
last use of ERROR, the empty list will be output. The error list contains four members: an
integer code corresponding to the type of error, the text of the error message, the name of the
procedure in which the error occurred, and the instruction line on which the error occurred. (See
also the list of ERROR CODES)

PAUSE

PAUSE

Command or operation that enters an interactive pause. The user is prompted for instructions,
as at toplevel, but with a prompt that includes the name of the procedure in which PAUSE was
invoked. Local variables of that procedure are available during the pause. PAUSE outputs if
the pause is ended by a CONTINUE with an input.

If the variable ERRACT exists, and an error condition occurs, the contents of that variable are
run as an instructionlist. Typically ERRACT is given the value [PAUSE] so that an interactive
pause will be entered on the event of an error. This allows the user to check values of local
variables at the time of the error.

CONTINUE

CONTINUE value
CO value
(CONTINUE)
(CO)

Command that ends the current interactive pause, returning to the context of the PAUSE
invocation that began it. If CONTINUE is given an input, that value is used as the output from
the PAUSE. If not, the PAUSE does not output.

Exceptionally, the CONTINUE command can be used without its default input and without
parentheses provided that nothing follows it on the instruction line.

YIELD

YIELD

The yield command is like hitting the YIELD BUTTON but is under Logo control.
See also NoYield command.

NOYIELD

NOYIELD

The yield command is like hitting the NOYIELD BUTTON but is under Logo control. See also
Yield command.

SETCURSORWAIT

SETCURSORWAIT

This will set the cursor to the familiar hourglass shape. Its purpose is to indicate two things.
One is that the operation about to take place will take some time. And second that during that
time the user does not have control of Windows (not yielding). This function only works when
not yielding. Once yielding the appropriate cursor will be used on the next event involving the
cursor (like moving the mouse). This means that you must issue NOYIELD before each
SETCURSORWAIT. If you decide to YIELD momentarily during a computation you must
SETCURSORWAIT again. In other words if you wish to use SETCURSORWAIT it should
always be paired up with a NOYIELD (just before it).

Example:

repeat 100~
 [~
 noyield~
 setcursorwait~
 repeat 100 ~
 [~
 (work to be done)~
]~
 setcursornowait~
 yield~
]

HALT

HALT

The halt command is like hitting the HALT BUTTON but is under Logo control.

WAIT

WAIT time

Command that delays further execution for "time" 60ths of a second. Also causes any buffered
characters destined for the terminal to be printed immediately. WAIT 0 can be used to achieve
this buffer flushing without actually waiting.

BYE

BYE

Command that exits from Logo; returns to the operating system.

.MAYBEOUTPUT

.MAYBEOUTPUT value (special form)

Works like OUTPUT except that the expression that provides the input value might not, in fact,
output a value, in which case the effect is like STOP. This is intended for use in control
structure definitions, for cases in which you don't know whether or not some expression
produces a value. Example:

to invoke :function [:inputs] 2
.maybeoutput apply :function :inputs
end

? (invoke "print "a "b "c)
a b c
? print (invoke "word "a "b "c)
abc

This is an alternative to RUNRESULT. It's fast and easy to use, at the cost of being an
exception to Logo's evaluation rules. (Ordinarily, it should be an error if the expression that's
supposed to provide an input to something doesn't have a value.)

IGNORE

IGNORE value (library procedure)

Command that does nothing. Used when an expression is evaluated for a side effect and its
actual value is unimportant.

`

` list (library procedure)

Outputs a list equal to its input but with certain substitutions. If a member of the input list is the
word "," (comma) then the following member should be an instructionlist that produces an
output when run. That output value replaces the comma and the instructionlist. If a member of
the input list is the word ",@" (comma atsign) then the following member should be an
instructionlist that outputs a list when run. The members of that list replace the ,@ and the
instructionlist. Example:

show `[foo baz ,[bf [a b c]] garply ,@[bf [a b c]]]

will print

[foo baz [b c] garply b c]

FOR

FOR forcontrol instructionlist (library procedure)

Command in which the first input must be a list containing three or four members: (1) a word,
which will be used as the name of a local variable; (2) a word or list that will be evaluated as by
RUN to determine a number, the starting value of the variable; (3) a word or list that will be
evaluated to determine a number, the limit value of the variable; (4) an optional word or list that
will be evaluated to determine the step size. If the fourth element is missing, the step size will
be 1 or -1 depending on whether the limit value is greater than or less than the starting value,
respectively.

The second input is an instructionlist. The effect of FOR is to run that instructionlist repeatedly,
assigning a new value to the control variable (the one named by the first element of the
forcontrol list) each time. First the starting value is assigned to the control variable. Then the
value is compared to the limit value. FOR is complete when the sign of (current - limit) is the
same as the sign of the step size. (If no explicit step size is provided, the instructionlist is
always run at least once. An explicit step size can lead to a zero-trip FOR, e.g., FOR [I 1 0
1] ...) Otherwise, the instructionlist is run, then the step is added to the current value of the
control variable and FOR returns to the comparison step.

? for [i 2 7 1.5] [print :i]
2
3.5
5
6.5
?

DO.WHILE

DO.WHILE instructionlist tfexpression (library procedure)

Command that repeatedly evaluates the "instructionlist" as long as the evaluated "tfexpression"
remains TRUE. Evaluates the first input first, so the "instructionlist" is always run at least once.
The "tfexpression" must be an expressionlist whose value when evaluated is TRUE or FALSE.

WHILE

WHILE tfexpression instructionlist (library procedure)

Command that repeatedly evaluates the "instructionlist" as long as the evaluated "tfexpression"
remains TRUE. Evaluates the first input first, so the "instructionlist" may never be run at all.
The "tfexpression" must be an expressionlist whose value when evaluated is TRUE or FALSE.

DO.UNTIL

DO.UNTIL instructionlist tfexpression (library procedure)

Command that repeatedly evaluates the "instructionlist" as long as the evaluated "tfexpression"
remains FALSE. Evaluates the first input first, so the "instructionlist" is always run at least
once. The "tfexpression" must be an expressionlist whose value when evaluated is TRUE or
FALSE.

UNTIL

UNTIL tfexpression instructionlist (library procedure)

Command that repeatedly evaluates the "instructionlist" as long as the evaluated "tfexpression"
remains FALSE. Evaluates the first input first, so the "instructionlist" may never be run at all.
The "tfexpression" must be an expressionlist whose value when evaluated is TRUE or FALSE.

GO

GO label

(NOT IMPLEMENTED YET)

This command can be used only inside a procedure. The input must be a number. The same
number must appear at the beginning of some line in the same procedure. (This line number is
otherwise ignored.) The next command executed will be the one on the indicated line in the
definition. Note: there is always a better way to do it without using go.

TEMPLATE-BASED ITERATION

The procedures in this section are iteration tools based on the idea of a "template." This is a
generalization of an instruction list or an expression list in which "slots" are provided for the tool
to insert varying data. Three different forms of template can be used.

The most commonly used form for a template is "explicit-slot" form, or "question mark" form.
Example:

? show map [? * ?] [2 3 4 5]
[4 9 16 25]
?

In this example, the MAP tool evaluated the template [? * ?] repeatedly, with each of the
members of the data list [2 3 4 5] substituted in turn for the question marks. The same value
was used for every question mark in a given evaluation. Some tools allow for more than one
datum to be substituted in parallel; in these cases the slots are indicated by ?1 for the first
datum, ?2 for the second, and so on. Example:

? show (map [word ?1 ?2 ?1] [a b c] [d e f])
[ada beb cfc]
?

If the template wishes to compute the datum number, the form (? 1) is equivalent to ?1, so (? ?1)
means the datum whose number is given in datum number 1. Some tools allow additional slot
designations, as shown in the individual descriptions.

The second form of template is the "named-procedure" form. If the template is a word rather
than a list, it is taken as the name of a procedure. That procedure must accept a number of
inputs equal to the number of parallel data slots provided by the tool; the procedure is applied to
all of the available data in order. That is, if data ?1 through ?3 are available, the template
"PROC is equivalent to [PROC ?1 ?2 ?3]. Example:

? show (map "word [a b c] [d e f])
[ad be cf]
?

to dotprod :a :b ; vector dot product
op apply "sum (map "product :a :b)
end

The third form of template is "named-slot" or "lambda" form. This form is indicated by a
template list containing more than one element, whose first element is itself a list. The first
element is taken as a list of names; local variables are created with those names and given the
available data in order as their values. The number of names must equal the number of
available data. This form is needed primarily when one iteration tool must be used within the

template list of another, and the ? notation would be ambiguous in the inner template. Example:

to matmul :m1 :m2 [:tm2 transpose :m2] ; multiply two matrices
output map [[row] map [[col] dotprod :row :col] :tm2] :m1
end

These iteration tools are extended versions of the ones in Appendix B of the book Computer
Science Logo Style, Volume 3: Advanced Topics by Brian Harvey [MIT Press, 1987]. The
extensions are primarily to allow for variable numbers of inputs.

APPLY
INVOKE
FOREACH
MAP
MAP.SE
FILTER
FIND
REDUCE
CROSSMAP
CASCADE
CASCADE.2
TRANSFER

APPLY

APPLY template inputlist

Command or operation that runs the "template," filling its slots with the members of "inputlist."
The number of members in "inputlist" must be an acceptable number of slots for "template." It
is illegal to apply the primitive TO as a template, but anything else is okay. APPLY outputs
what "template" outputs, if anything.

INVOKE

INVOKE template input (library procedure)
(INVOKE template input1 input2 ...)

Command or operation which is like APPLY except that the inputs are provided as separate
expressions rather than in a list.

FOREACH

FOREACH data template (library procedure)
(FOREACH data1 data2 ... template)

Command that evaluates the template list repeatedly, once for each element of the data list. If
more than one data list are given, each of them must be the same length. (The data inputs can
be words, in which case the template is evaluated once for each character.

In a template, the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. If
multiple parallel slots are used, then (?REST 1) goes with ?1, etc.

In a template, the symbol # represents the position in the data input of the member currently
being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2.

MAP

MAP template data (library procedure)
(MAP template data1 data2 ...)

Outputs a word or list, depending on the type of the data input, of the same length as that data
input. (If more than one data input are given, the output is of the same type as data1.) Each
element of the output is the result of evaluating the template list, filling the slots with the
corresponding element(s) of the data input(s). (All data inputs must be the same length.) In the
case of a word output, the results of the template evaluation must be words, and they are
concatenated with WORD.

In a template, the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. If
multiple parallel slots are used, then (?REST 1) goes with ?1, etc.

In a template, the symbol # represents the position in the data input of the member currently
being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2.

MAP.SE

MAP.SE template data (library procedure)
(MAP.SE template data1 data2 ...)

Outputs a list formed by evaluating the template list repeatedly and concatenating the results
using SENTENCE. That is, the members of the output are the members of the results of the
evaluations. The output list might, therefore, be of a different length from that of the data
input(s). (If the result of an evaluation is the empty list, it contributes nothing to the final
output.) The data inputs may be words or lists.

In a template, the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E]. If
multiple parallel slots are used, then (?REST 1) goes with ?1, etc.

In a template, the symbol # represents the position in the data input of the member currently
being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2.

FILTER

FILTER tftemplate data (library procedure)

Outputs a word or list, depending on the type of the data input, containing a subset of the
members (for a list) or characters (for a word) of the input. The template is evaluated once for
each member or character of the data, and it must produce a TRUE or FALSE value. If the
value is TRUE, then the corresponding input constituent is included in the output.

? print filter "vowelp "elephant
eea
?

In a template, the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E].

In a template, the symbol # represents the position in the data input of the member currently
being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2.

FIND

FIND tftemplate data (library procedure)

Outputs the first constituent of the data input (the first member of a list, or the first character of a
word) for which the value produced by evaluating the template with that constituent in its slot is
TRUE. If there is no such constituent, the empty list is output.

In a template, the symbol ?REST represents the portion of the data input to the right of the
member currently being used as the ? slot-filler. That is, if the data input is [A B C D E] and the
template is being evaluated with ? replaced by B, then ?REST would be replaced by [C D E].

In a template, the symbol # represents the position in the data input of the member currently
being used as the ? slot-filler. That is, if the data input is [A B C D E] and the template is being
evaluated with ? replaced by B, then # would be replaced by 2.

REDUCE

REDUCE template data (library procedure)

Outputs the result of applying the template to accumulate the elements of the data input. The
template must be a two-slot function. Typically it is an associative function name like "SUM.
If the data input has only one constituent (member in a list or character in a word), the output is
that constituent. Otherwise, the template is first applied with ?1 filled with the next-to-last
constituent and ?2 with the last constituent. Then, if there are more constituents, the template is
applied with ?1 filled with the next constituent to the left and ?2 with the result from the previous
evaluation. This process continues until all constituents have been used. The data input may
not be empty.

Note: If the template is, like SUM, the name of a procedure that is capable of accepting
arbitrarily many inputs, it is more efficient to use APPLY instead of REDUCE. The latter is
good for associative procedures that have been written to accept exactly two inputs:

to max :a :b
output ifelse :a > :b [:a] [:b]
end

print reduce "max [...]

Alternatively, REDUCE can be used to write MAX as a procedure that accepts any number of
inputs, as SUM does:

to max [:inputs] 2
if emptyp :inputs ~
 [(throw "error [not enough inputs to max])]
output reduce [ifelse ?1 > ?2 [?1] [?2]] :inputs
end

CROSSMAP

CROSSMAP template listlist (library procedure)
(CROSSMAP template data1 data2 ...)

Outputs a list containing the results of template evaluations. Each data list contributes to a slot
in the template; the number of slots is equal to the number of data list inputs. As a special case,
if only one data list input is given, that list is taken as a list of data lists, and each of its members
contributes values to a slot. CROSSMAP differs from MAP in that instead of taking members
from the data inputs in parallel, it takes all possible combinations of members of data inputs,
which need not be the same length.

? show (crossmap [word ?1 ?2] [a b c] [1 2 3 4])
[a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4]
?

For compatibility with the version in CSLS, CROSSMAP templates may use the notation :1
instead of ?1 to indicate slots.

CASCADE

CASCADE endtest template startvalue (library procedure)
(CASCADE endtest tmp1 sv1 tmp2 sv2 ...)
(CASCADE endtest tmp1 sv1 tmp2 sv2 ... finaltemplate)

Outputs the result of applying a template (or several templates, see TEMPLATE-BASED
ITERATION) repeatedly, with a given value filling the slot the first time, and the result of each
application filling the slot for the following application.

In the simplest case, CASCADE has three inputs. The second input is a one-slot expression
template. That template is evaluated some number of times (perhaps zero). On the first
evaluation, the slot is filled with the third input; on subsequent evaluations, the slot is filled with
the result of the previous evaluation. The number of evaluations is determined by the first input.
This can be either a nonnegative integer, in which case the template is evaluated that many times,
or a predicate expression template, in which case it is evaluated (with the same slot filler that will
be used for the evaluation of the second input) repeatedly, and the CASCADE evaluation
continues as long as the predicate value is FALSE. (In other words, the predicate template
indicates the condition for stopping.)

If the template is evaluated zero times, the output from CASCADE is the third (startvalue) input.
Otherwise, the output is the value produced by the last template evaluation.

CASCADE templates may include the symbol # to represent the number of times the template
has been evaluated. This slot is filled with 1 for the first evaluation, 2 for the second, and so on.

? show cascade 5 [lput # ?] []
[1 2 3 4 5]
? show cascade [vowelp first ?] [bf ?] "spring
ing
? show cascade 5 [# * ?] 1
120
?

Several cascaded results can be computed in parallel by providing additional template-startvalue
pairs as inputs to CASCADE. In this case, all templates (including the endtest template, if used)
are multi-slot, with the number of slots equal to the number of pairs of inputs. In each round of
evaluations, ?2 represents the result of evaluating the second template in the previous round. If
the total number of inputs (including the first endtest input) is odd, then the output from
CASCADE is the final value of the first template. If the total number of inputs is even, then the
last input is a template that is evaluated once, after the end test is satisfied, to determine the
output from CASCADE.

to fibonacci :n
output (cascade :n [?1 + ?2] 1 [?1] 0)
end

to piglatin :word
output (cascade [vowelp first ?] ~

[word bf ? first ?] ~
:word ~
[word ? "ay])

end

CASCADE.2

CASCADE.2 endtest temp1 startval1 temp2 startval2 (library procedure)

Outputs the result of invoking CASCADE with the same inputs. The only difference is that the
default number of inputs is five instead of three.

TRANSFER

TRANSFER endtest template inbasket (library procedure)

Outputs the result of repeated evaluation of the template. The template is evaluated once for
each member of the list "inbasket." TRANSFER maintains an "outbasket" that is initially the
empty list. After each evaluation of the template, the resulting value becomes the new
outbasket.

In the template, the symbol ?IN represents the current element from the inbasket; the symbol ?
OUT represents the entire current outbasket. Other slot symbols should not be used.

If the first (endtest) input is an empty list, evaluation continues until all inbasket members have
been used. If not, the first input must be a predicate expression template, and evaluation
continues until either that template's value is TRUE or the inbasket is used up.

MACROS

MACRO COMMANDS

MACRO COMMANDS

.MACRO

.MACRO

.MACRO procname :input1 :input2 ... (special form)

.DEFMACRO procname text
MACROP name

A macro is a special kind of procedure whose output is evaluated as Logo instructions in the
context of the macro's caller. .MACRO is like TO except that the new procedure becomes a
macro; .DEFMACRO is like DEFINE with the same exception. MACROP returns TRUE if its
input is the name of a macro.

Macros are useful for inventing new control structures comparable to REPEAT, IF, and so on.
Such control structures can almost, but not quite, be duplicated by ordinary Logo procedures.
For example, here is an ordinary procedure version of REPEAT:

to my.repeat :num :instructions
if :num=0 [stop]
run :instructions
my.repeat :num-1 :instructions
end

This version works fine for most purposes, e.g.,

my.repeat 5 [print "hello]

But it doesn't work if the instructions to be carried out include OUTPUT, STOP, or LOCAL.
For example, consider this procedure:

to example
print [Guess my secret word. You get three guesses.]
repeat 3 [type "|?? | ~

if readword = "secret [pr "Right! stop]]
print [Sorry, the word was "secret"!]
end

This procedure works as written, but if MY.REPEAT is used instead of REPEAT, it won't work
because the STOP will stop MY.REPEAT instead of stopping EXAMPLE as desired.

The solution is to make MY.REPEAT a macro. Instead of actually carrying out the
computation, a macro must return a list containing Logo instructions. The contents of that list
are evaluated as if they appeared in place of the call to the macro. Here's a macro version of
REPEAT:

.macro my.repeat :num :instructions
if :num=0 [output []]
output sentence :instructions ~

(list "my.repeat :num-1 :instructions)
end

Every macro is an operation -- it must always output something. Even in the base case,
MY.REPEAT outputs an empty instruction list. To show how MY.REPEAT works, let's take the
example

my.repeat 5 [print "hello]

For this example, MY.REPEAT will output the instruction list

[print "hello my.repeat 4 [print "hello]]

Logo then executes these instructions in place of the original invocation of MY.REPEAT; this
prints "hello" once and invokes another repetition.

The technique just shown, although fairly easy to understand, has the defect of slowness because
each repetition has to construct an instruction list for evaluation. Another approach is to make
my.repeat a macro that works just like the non-macro version unless the instructions to be
repeated include OUTPUT or STOP:

.macro my.repeat :num :instructions
catch "repeat.catchtag ~

[op repeat.done runresult [repeat1 :num :instructions]]
op []
end

to repeat1 :num :instructions
if :num=0 [throw "repeat.catchtag]
run :instructions
.maybeoutput repeat1 :num-1 :instructions
end

to repeat.done :repeat.result
if emptyp :repeat.result [op [stop]]
op list "output quoted first :repeat.result
end

If the instructions do not include STOP or OUTPUT, then REPEAT1 will reach its base case and
invoke THROW. As a result, my.repeat's last instruction line will output an empty list, so the
second evaluation of the macro result will do nothing. But if a STOP or OUTPUT happens,
then REPEAT.DONE will output a STOP or OUTPUT instruction that will be re-executed in the
caller's context.

The macro-defining commands have names starting with a dot because macros are an advanced
feature of Logo; it's easy to get in trouble by defining a macro that doesn't terminate, or by

failing to construct the instruction list properly.

Lisp users should note that Logo macros are NOT special forms. That is, the inputs to the
macro are evaluated normally, as they would be for any other Logo procedure. It's only the
output from the macro that's handled unusually.

Here's another example:

.macro localmake :name :value
output (list ("local~

word "" :name~
"apply~
""make~
(list :name :value))

end

It's used this way:

to try
localmake "garply "hello
print :garply
end

LOCALMAKE outputs the list

[local "garply apply "make [garply hello]]

The reason for the use of APPLY is to avoid having to decide whether or not the second input to
MAKE requires a quotation mark before it. (In this case it would -- MAKE "GARPLY
"HELLO -- but the quotation mark would be wrong if the value were a list.)

It's often convenient to use the ` function to construct the instruction list:

.macro localmake :name :value
op `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

On the other hand, ` is pretty slow, since it's tree recursive and written in Logo.

ERROR PROCESSING

If an error occurs, Logo takes the following steps. First, if there is an available variable named
ERRACT, Logo takes its value as an instructionlist and runs the instructions. The operation
ERROR may be used within the instructions (once) to examine the error condition. If the
instructionlist invokes PAUSE, the error message is printed before the pause happens. Certain
errors are "recoverable"; for one of those errors, if the instructionlist outputs a value, that value is
used in place of the expression that caused the error. (If ERRACT invokes PAUSE and the user
then invokes CONTINUE with an input, that input becomes the output from PAUSE and
therefore the output from the ERRACT instructionlist.)

It is possible for an ERRACT instructionlist to produce an inappropriate value or no value where
one is needed. As a result, the same error condition could recur forever because of this
mechanism. To avoid that danger, if the same error condition occurs twice in a row from an
ERRACT instructionlist without user interaction, the message "Erract loop" is printed and
control returns to toplevel. "Without user interaction" means that if ERRACT invokes PAUSE
and the user provides an incorrect value, this loop prevention mechanism does not take effect and
the user gets to try again.

During the running of the ERRACT instructionlist, ERRACT is locally unbound, so an error in
the ERRACT instructions themselves will not cause a loop. In particular, an error during a
pause will not cause a pause-within-a-pause unless the user reassigns the value [PAUSE] to
ERRACT during the pause. But such an error will not return to toplevel; it will remain within
the original pause loop.

If there is no available ERRACT value, Logo handles the error by generating an internal
THROW "ERROR. (A user program can also generate an error condition deliberately by
invoking THROW.) If this throw is not caught by a CATCH "ERROR in the user program, it is
eventually caught either by the toplevel instruction loop or by a pause loop, which prints the
error message. An invocation of CATCH "ERROR in a user program locally unbinds ERRACT,
so the effect is that whichever of ERRACT and CATCH "ERROR is more local will take
precedence.

If a floating point overflow occurs during an arithmetic operation, or a two-input mathematical
function (like POWER) is invoked with an illegal combination of inputs, the "doesn't like"
message refers to the second operand, but should be taken as meaning the combination.

ERROR CODES

ERROR CODES

Here are the numeric codes that appear as the first element of the list output by ERROR when an
error is caught, with the corresponding messages. Some messages may have two different codes
depending on whether or not the error is recoverable (that is, a substitute value can be provided
through the ERRACT mechanism) in the specific context. Some messages are warnings rather
than errors; these will not be caught. The first two are so bad that Logo exits immediately.

 0 Fatal internal error (can't be caught)
 1 Out of memory (can't be caught)
 2 PROC doesn't like DATUM as input (not recoverable)
 3 PROC didn't output to PROC
 4 Not enough inputs to PROC
 5 PROC doesn't like DATUM as input (recoverable)
 6 Too much inside ()'s
 7 I don't know what to do with DATUM
 8 ')' not found
 9 VAR has no value
 10 Unexpected ')'
 11 I don't know how to PROC (recoverable)
 12 Can't find catch tag for THROWTAG
 13 PROC is already defined
 14 Stopped
 15 Already dribbling
 16 File system error
 17 Assuming you mean IFELSE, not IF (warning only)
 18 VAR shadowed by local in procedure call (warning only)
 19 Throw "Error
 20 PROC is a primitive
 21 Can't use TO inside a procedure
 22 I don't know how to PROC (not recoverable)
 23 IFTRUE/IFFALSE without TEST
 24 Unexpected ']'
 25 Unexpected '}'
 26 Couldn't initialize graphics
 27 Macro returned VALUE instead of a list
 28 I don't know what to do with VALUE
 29 Can only use STOP or OUTPUT inside a procedure

SPECIAL VARIABLES

Logo takes special action if any of the following variable names exists. They follow the normal
scoping rules, so a procedure can locally set one of them to limit the scope of its effect.
Initially, no variables exist except CASEIGNOREDP, which is TRUE and buried.

SPECIAL COMMANDS

SPECIAL COMMANDS

CASEIGNOREDP
ERRACT
PRINTDEPTHLIMIT
PRINTWIDTHLIMIT
REDEFP
STARTUP

CASEIGNOREDP

CASEIGNOREDP

If TRUE, indicates that lower case and upper case letters should be considered equal by
EQUALP, BEFOREP, MEMBERP, etc. Logo initially makes this variable TRUE, and buries it.

ERRACT

ERRACT

An instructionlist that will be run in the event of an error. Typically has the value [PAUSE] to
allow interactive debugging.

PRINTDEPTHLIMIT

PRINTDEPTHLIMIT

If a nonnegative integer, indicates the maximum depth of sublist structure that will be printed by
PRINT, etc.

PRINTWIDTHLIMIT

PRINTWIDTHLIMIT

If a nonnegative integer, indicates the maximum number of elements in any one list that will be
printed by PRINT, etc.

REDEFP

REDEFP

If TRUE, allows primitives to be erased (ERASE) or redefined (COPYDEF).

STARTUP

STARTUP

If assigned a list value in a file loaded by LOAD, that value is run as an instructionlist after the
loading.

GETTING HELP

HELP COMMANDS

HELP COMMANDS

HELP

HELP

HELP
(HELP keyword)

This command has two forms (with and without a keyword argument). Without a keyword
Logo will enter Windows help on LOGO at the top level. With a keyword argument Logo will
search the Windows help for the keyword. You must enter the full keyword.

Example:

help "introduction ;(Enter help on introduction)
help "intro ;(Will fail to find the introduction)

For context sensitive help see the EDIT command.

Note also that Windows Help allows you to Copy text from Help to the Clipboard. Since the
Editor within Logo also supports the Clipboard this means that you can copy examples within
Help into the Editor, save them, and then execute them. To do this:

Click on EDIT in the Help menu.
Select Copy.
Using the mouse select the desired text (example code).
Click on COPY button (It is now in the Clipboard).
Enter the Logo Editor.
Set the cursor where you want the example inserted.
Click on EDIT in the Edit menu.
Select paste (it's now in the editor).

DIRECTORIES

Directories are the same as they are in DOS and Windows. They are added to logo
to make things easier.

DIRECTORY COMMANDS

DIRECTORY COMMANDS

DIR
CHDIR
POPDIR
MKDIR
RMDIR

DIR

DIR

This command shows files and directories in the current directory

CHDIR

CHDIR directory

This command is exactly like the DOS command CHDIR (cd). The parameter must be a word
(the name of the directory you want work in). You can use the DIR command to list both
procedures and directories. See also POPDIR and MKDIR.

POPDIR

POPDIR

This command pops you up (1 level) out of a directory. It is equivalent to CHDIR ".. command.
See also CHDIR and MKDIR

MKDIR

MKDIR directory

This command makes (creates) a directory and then changes (CHDIR) you into it. The
parameter must be a word (the name of the directory you want to make). You can use the DIR
command to list the files and directories in the current directory. Once done with the directory
you can pop (POPDIR) back out and change to another.

RMDIR

RMDIR directory

This command removes (deletes) a directory. The parameter must be a word (a name of an
existing directory). You cannot remove a directory if you are (CHDIR) into it. Nor can you
remove it, if it contains any files or other directories (DIR must not return anything while
changed to the directory you want to remove). So to be sure you can remove it, do a DIR and
check if it's there, then change (CHDIR) to it, do DIR again and confirm it's empty, pop
(POPDIR) back out and then remove (RMDIR) it. See also MKDIR.

WINDOWS FUNCTIONS

This section describes how the LOGO programmer can create powerful Graphical User
Interfaces (GUIs). Most any GUI has an Application Programming Interface (API), which is
what this section documents for Logo regarding Windows. Both the GUI and the API maintain
a parent-child relationship. That is, Windows and controls appear (graphically) in a nested
fashion (or owned by one another). The nested appearance is maintained in the code you
develop to present it.

For each "somethingCREATE" command a parent must be specified which identifies the
relationship. When a parent of any kind is "somethingDELETED" so will all its "child"
Windows and controls. Every Window function (command) specifies a "name". On the
"somethingCREATE" commands it is their to label the "something" so that it can later be
referenced. On most other commands it is used as a "handle" to identify the Window or control
you wish to communicate with. And third it is also used to reference the "parent" of the
Window or control that is to "own" this new "something".

Note that the coordinates used in all the Windows functions are in Windows coordinate system
(NOT the turtle coordinate system). That is the Y axis is upside down (Positive numbers are
down). The origin is NOT the middle of the screen it is the upper left hand corner of the
window.

WINDOW COMMANDS
DIALOG COMMANDS
LISTBOX COMMANDS
COMBOBOX COMMANDS
SCROLLBAR COMMANDS
BUTTON COMMANDS
STATIC COMMANDS
GROUPBOX COMMANDS
CHECKBOX COMMANDS
RADIOBUTTON COMMANDS
DEBUG COMMANDS
Modal vs. Modeless Windows
WINDOWS Example

WINDOW COMMANDS

WINDOWCREATE
WINDOWDELETE

WINDOWCREATE

WINDOWCREATE parent name title xpos ypos width height

This command will create a WINDOW. A WINDOW is used as the frame work to which you
add other window objects or controls (sometimes called widget's). You can add things such as
buttons, scrollbars, listboxes, etc. to the WINDOW.

parent: (WORD) Is the name of the WINDOW that is to own this new WINDOW. If this is the
first window created use "root as the parent name.

name: (WORD) Is used to identify this WINDOW (perhaps as the parent of another future
window or control) and MUST be unique.

title: (LIST) Is used as the title (caption) of the WINDOW.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
WINDOW.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
WINDOW.

width: (INTEGER) Is the width of the new WINDOW.

height: (INTEGER) Is the height of the new WINDOW.

WINDOWDELETE

WINDOWDELETE name

This command will delete (close) the WINDOW with the given name. Note all the child
windows and controls will be also deleted.

name: (WORD) Is used to identify the WINDOW you want destroyed.

DIALOG COMMANDS

DIALOGCREATE
DIALOGDELETE

DIALOGCREATE

DIALOGCREATE parent name title xpos ypos width height setup

This command will create a DIALOG window. A DIALOG window is used as the frame work
to which you add other window objects or controls (sometimes called widget's). You can add
things such as buttons, scrollbars, listboxes, etc. to the DIALOG window. This function is
similar to WINDOWCREATE except it will not return to the caller until the Window is closed
(see discussion below).

parent: (WORD) Is the name of the DIALOG window that is to own this new DIALOG window.
If this is the first window created use "root as the parent name.

name: (WORD) Is used to identify this DIALOG window (perhaps as the parent of another
future window or control) and MUST be unique.

title: (LIST) Is used as the title (caption) of the DIALOG window.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
DIALOG window.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new DIALOG
window.

width: (INTEGER) Is the width of the new DIALOG window.

height: (INTEGER) Is the height of the new DIALOG window.

setup: (LIST) Is a (short) list of logo commands (or a procedure name) to execute when the
DIALOG window is created. The commands to be executed should most likely be other
somethingCREATE functions to add controls to the window. The reason is, is that
DIALOGCREATE will not return until the window is closed (the caller looses control and
cannot add controls). So be sure to add an (OK, END, CLOSE, CANCEL or whatever) button
that will call DIALOGCLOSE on this window.

DIALOGDELETE

DIALOGDELETE name

This command will delete (close) the DIALOG window with the given name. Note all the child
windows and controls will be also deleted.

name: (WORD) Is used to identify the DIALOG window you want destroyed.

LISTBOX COMMANDS

LISTBOXCREATE
LISTBOXDELETE
LISTBOXGETSELECT
LISTBOXADDSTRING
LISTBOXDELETESTRING

LISTBOXCREATE

LISTBOXCREATE parent name xpos ypos width height

This command will create a LISTBOX control. A LISTBOX control is used to give the user a
selection of items.

parent: (WORD) Is the name of the DIALOG window that is to own this new LISTBOX control.

name: (WORD) Is used to identify this LISTBOX control.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
LISTBOX control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
LISTBOX control.

width: (INTEGER) Is the width of the new LISTBOX control.

height: (INTEGER) Is the height of the new LISTBOX control.

LISTBOXDELETE

LISTBOXDELETE name

This command will delete (close) the LISTBOX control with the given name.

name: (WORD) Is used to identify the LISTBOX control you want destroyed.

LISTBOXGETSELECT

LISTBOXGETSELECT name

This command will solicit (ask) the LISTBOX control for the selected item and output a copy of
it.

output: (LIST) Represents the selected item of the LISTBOX control.

name: (WORD) Is used to identify the LISTBOX you wish to solicit.

LISTBOXADDSTRING

LISTBOXADDSTRING name item

This command will add the "item" to the LISTBOX control with the given "name".

name: (WORD) Is used to identify the LISTBOX control you wish to add a string to.

item: (WORD) Is the item you wish to insert into the LISTBOX control.

LISTBOXDELETESTRING

LISTBOXDELETESTRING name index

This command will delete an item at "index" of the LISTBOX control.

name: (WORD) Is used to identify the LISTBOX control you want to delete a string from.

index: (INTEGER) Index of item you wish deleted (starting at 0).

COMBOBOX COMMANDS

COMBOBOXCREATE
COMBOBOXDELETE
COMBOBOXGETTEXT
COMBOBOXSETTEXT
COMBOBOXADDSTRING
COMBOBOXDELETESTRING

COMBOBOXCREATE

COMBOBOXCREATE parent name xpos ypos width height

This command will create a COMBOBOX control. A COMBOBOX control is used to give the
user a selection of items and also allow the user to enter a selection not listed. A COMBOBOX
is actually two controls in one (A LISTBOX control and an EDIT control). If you wish to create
an EDIT control (a COMBOBOX without a LISTBOX) just set the height to a size in which the
LISTBOX doesn't fit.

parent: (WORD) Is the name of the DIALOG window that is to own this new COMBOBOX
control.

name: (WORD) Is used to identify this COMBOBOX control and MUST be unique.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
COMBOBOX control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
COMBOBOX control.

width: (INTEGER) Is the width of the new COMBOBOX control.

height: (INTEGER) Is the height of the new COMBOBOX control.

COMBOBOXDELETE

COMBOBOXDELETE name

This command will delete (close) the COMBOBOX control with the given name.

name: (WORD) Is used to identify the COMBOBOX you want destroyed.

COMBOBOXGETTEXT

COMBOBOXGETTEXT name

This command will solicit (ask) the COMBOBOX, for the contents of the EDIT control portion
of the COMBOBOX (which may or may not be a selected item).

output: (LIST) Represents the EDIT control contents in the COMBOBOX control.

name: (WORD) Is used to identify the COMBOBOX control you wish to solicit.

COMBOBOXSETTEXT

COMBOBOXSETTEXT name text

This command will set the contents of the (EDIT control component of) COMBOBOX with
"text".

name: (WORD) Is used to identify the COMBOBOX control you wish to SETTEXT to.

text: (WORD) Is the item you wish to insert into the (EDIT control component of)
COMBOBOX control.

COMBOBOXADDSTRING

COMBOBOXADDSTRING name item

This command will add the "item" to the COMBOBOX with the given "name". Note that items
in the LISTBOX are automatically sorted as they are inserted.

name: (WORD) Is used to identify the COMBOBOX you wish to add to.

item: (LIST) Is the item you wish to insert into the (LISTBOX component of) COMBOBOX.

COMBOBOXDELETESTRING

COMBOBOXDELETESTRING name index

This command will delete an item at "index" of the COMBOBOX with the given "name".

name: (WORD) Is used to identify the COMBOBOX you want to delete string from.

index: (INTEGER) Index of item you wish deleted (starting at 0).

SCROLLBAR COMMANDS

SCROLLBARCREATE
SCROLLBARDELETE
SCROLLBARSET
SCROLLBARGET

SCROLLBARCREATE

SCROLLBARCREATE parent name xpos ypos width height callback

This command will create a SCROLLBAR control. A SCROLLBAR control is used to solicit,
from the user, a variable value (although you can map its function to anything you desire). It is
also common to link it to a STATIC control to inform the user of its setting (but this is not
required). You must also not forget to set the SCROLLBAR range and initial value using
SCROLLBARSET.

The orientation (vertical or horizontal) of the SCROLLBAR is determined by the longest
dimension. That is, if X > Y then horizontal is chosen otherwise vertical is chosen.

parent: (WORD) Is the name of the window that is to own this new SCROLLBAR control.

name: (WORD) Is used to identify this SCROLLBAR control and MUST be unique.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
SCROLLBAR control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
SCROLLBAR control.

width: (INTEGER) Is the width of the new SCROLLBAR control.

height: (INTEGER) Is the height of the new SCROLLBAR control.

callback:(LIST) Is a (short) list of logo commands (or a procedure name) to execute when the
user adjusts the SCROLLBAR. It is common to call a procedure that informs the user of what
the SCROLLBAR state is.

SCROLLBARDELETE

SCROLLBARDELETE name

This command will delete (close) the SCROLLBAR control with the given name.

name: (WORD) Is used to identify the SCROLLBAR control you want destroyed.

SCROLLBARSET

SCROLLBARSET name lorange hirange position

This command will set the output range and current position of the SCROLLBAR control. You
can issue a SCROLLBARSET as many times as you want.

name: (WORD) Is used to identify the SCROLLBAR control you want to set.

lorange:(INTEGER) Is used as the low range of the output values of the SCROLLBAR control.

hirange:(INTEGER) Is used as the high range of the output values of the SCROLLBAR control.

position:(INTEGER) Is used to set the current position (and output value) of the SCROLLBAR
control.

SCROLLBARGET

SCROLLBARGET name

This command will output the position of the SCROLLBAR control of the given name.

output: (INTEGER) Is the position of the scrollbar (always within the SET range).

name: (WORD) Is used to identify the SCROLLBAR control you wish to solicit.

BUTTON COMMANDS

BUTTONCREATE
BUTTONDELETE

BUTTONCREATE

BUTTONCREATE parent name label xpos ypos width height callback

This command will create a BUTTON control. A BUTTON control is used to allow the user to
trigger events. The only function of the BUTTON control is to execute the "callback" list.

parent: (WORD) Is the name of the window that is to own this new BUTTON control.

name: (WORD) Is used to identify this BUTTON control.

label: (LIST) Is used as the label of the BUTTON control.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
BUTTON control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
BUTTON control.

width: (INTEGER) Is the width of the new BUTTON control.

height: (INTEGER) Is the height of the new BUTTON control.

callback:(LIST) Is a (short) list of logo commands (or a procedure name) to execute when the
user clicks on the BUTTON.

BUTTONDELETE

BUTTONDELETE name

This command will delete (close) the BUTTON control with the given name.

name: (WORD) Is used to identify the BUTTON you want destroyed.

STATIC COMMANDS

STATICCREATE
STATICDELETE
STATICUPDATE

STATICCREATE

STATICCREATE parent name text xpos ypos width height

This command will create a STATIC control. A STATIC control is used to simply display text.
The name can be a bit misleading. In that a STATIC control can be very dynamic by using the
STATICUPDATE command.

parent: (WORD) Is the name of the DIALOG window that is to own this new STATIC control.

name: (WORD) Is used to identify this STATIC control and MUST be unique.

text: (LIST) Is used as the (perhaps initial) contents of the STATIC control.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new STATIC
control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new STATIC
control.

width: (INTEGER) Is the width of the new STATIC control.

height: (INTEGER) Is the height of the new STATIC control.

STATICDELETE

STATICDELETE name

This command will delete (close) the STATIC control with the given name.

name: (WORD) Is used to identify the STATIC control you want destroyed.

STATICUPDATE

STATICUPDATE name text

This command will replace the contents of the STATIC control with "text".

name: (WORD) Is used to identify the STATIC control you want to update.

text: (LIST) Is used as the new contents of the STATIC control.

GROUPBOX COMMANDS

GROUPBOXCREATE
GROUPBOXDELETE

GROUPBOXCREATE

GROUPBOXCREATE parent name xpos ypos width height

This command will create a GROUPBOX control. A GROUPBOX control is a unique control
compared with most other Windows functions. It is unique because all it does is group
RadioButtons (RADIOBUTTONCREATE) and CheckBoxs (CHECKBOXCREATE) both
graphically and logically. RadioButtons and CheckBoxs must belong to a GROUPBOX. Also
realize that RadioButtons and CheckBoxs placed in the GROUPBOX still use the parents origin
NOT the GROUPBOX origin.

parent: (WORD) Is the name of the DIALOG window that is to own this new GROUPBOX
control.

name: (WORD) Is used to identify this GROUPBOX control and MUST be unique.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
GROUPBOX control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
GROUPBOX control.

width: (INTEGER) Is the width of the new GROUPBOX control.

height: (INTEGER) Is the height of the new GROUPBOX control.

GROUPBOXDELETE

GROUPBOXDELETE name

This command will delete (close) the GROUPBOX control with the given name.

name: (WORD) Is used to identify the GROUPBOX you want destroyed.

CHECKBOX COMMANDS

CHECKBOXCREATE
CHECKBOXDELETE
CHECKBOXGET
CHECKBOXSET

CHECKBOXCREATE

CHECKBOXCREATE parent group name label xpos ypos width height

This command will create a CHECKBOX control. A CHECKBOX control is used to give the
user a selection of a two state (True or False) item. A CHECKBOX must also be associated
with a GROUPBOX (GROUPBOXCREATE).

parent: (WORD) Is the name of the DIALOG window that is to own this new CHECKBOX
control.

group: (WORD) Is the name of the GROUPBOX control that is to be associated with this new
CHECKBOX control.

name: (WORD) Is used to identify this COMBOBOX control and MUST be unique.

label: (LIST) Is used as the label of this new CHECKBOX control.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
CHECKBOX control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
CHECKBOX control.

width: (INTEGER) Is the width of the new CHECKBOX control.

height: (INTEGER) Is the height of the new CHECKBOX control.

CHECKBOXDELETE

CHECKBOXDELETE name

This command will delete (close) the CHECKBOX control with the given name.

name: (WORD) Is used to identify the CHECKBOX you want destroyed.

CHECKBOXGET

CHECKBOXGET name

This command will solicit (ask) the CHECKBOX, for its state (True or False).

output: (SPECIAL) Represents the state (True or False) of the CHECKBOX control.

name: (WORD) Is used to identify the COMBOBOX control you wish to solicit.

CHECKBOXSET

CHECKBOXSET name state

This command will set the state of the CHECKBOX with state (True or False).

name: (WORD) Is used to identify the CHECKBOX control you wish to SET to.

state: (WORD) Is the state you wish to set the CHECKBOX control to.

RADIOBUTTON COMMANDS

RADIOBUTTONCREATE
RADIOBUTTONDELETE
RADIOBUTTONGET
RADIOBUTTONSET

RADIOBUTTONCREATE

RADIOBUTTONCREATE parent group name label xpos ypos width height

This command will create a RADIOBUTTON control. A RADIOBUTTON control is used to
give the user a selection of a two state (True or False) item. But in addition to this the user will
be restricted to only have one RADIOBUTTON set True within a GROUPBOX at any given
time. A RADIOBUTTON must also be associated with a GROUPBOX
(GROUPBOXCREATE).

parent: (WORD) Is the name of the DIALOG window that is to own this new RADIOBUTTON
control.

group: (WORD) Is the name of the GROUPBOX control that is to be associated with this new
RADIOBUTTON control.

name: (WORD) Is used to identify this RADIOBUTTON control and MUST be unique.

label: (LIST) Is used as the label of this new RADIOBUTTON control.

xpos: (INTEGER) Is the X position you wish to place the upper left corner of the new
RADIOBUTTON control.

ypos: (INTEGER) Is the Y position you wish to place the upper left corner of the new
RADIOBUTTON control.

width: (INTEGER) Is the width of the new RADIOBUTTON control.

height: (INTEGER) Is the height of the new RADIOBUTTON control.

RADIOBUTTONDELETE

RADIOBUTTONDELETE name

This command will delete (close) the RADIOBUTTON control with the given name.

name: (WORD) Is used to identify the RADIOBUTTON you want destroyed.

RADIOBUTTONGET

RADIOBUTTONGET name

This command will solicit (ask) the RADIOBUTTON, for its state (True or False).

output: (SPECIAL) Represents the state (True or False) of the RADIOBUTTON control.

name: (WORD) Is used to identify the RADIOBUTTON control you wish to solicit.

RADIOBUTTONSET

RADIOBUTTONSET name state

This command will set the state of the RADIOBUTTON with state (True or False). Note that
even though the user can only have one RADIOBUTTON set True at any given time this can be
violated through this command. If you choose to use this command you must maintain a correct
state. That is, if you set a RADIOBUTTON True make sure you set all the other
RADIOBUTTONs within the GROUPBOX to False.

name: (WORD) Is used to identify the RADIOBUTTON control you wish to SET to.

state: (SPECIAL) Is the state (True or False) you wish to set the RADIOBUTTON control to.

DEBUG COMMANDS

DEBUGWINDOWS

DEBUGWINDOWS

DEBUGWINDOWS name

This command will print the tree (window hierarchy) starting at the window called "name".

name: (WORD) Is used to identify the root Window you wish print.

Modal vs. Modeless Windows

Windows programming supports two modes, Modal and Modeless. The Modal mode
(DIALOGCREATE) is similar to a non-windows programming model (the application is in
control). Similar, in that, in midstream of processing you, as the programmer, decide to prompt
the user for information (e.g. readlist). That is, processing is halted until the information is
acquired and other components of the application are inaccessible to the user. For example
prompting the user for a file name to open a document is Modal.

In the Modeless mode (WINDOWCREATE) the tables are turned, the Window (user) is in
control. For example the commander in LOGO is Modeless. This takes some getting used to
but is a very import concept. The program is now idle while. The application executes when
the user triggers and event (such as pushing a button).

Full custom Windows are available in Modeless and Modal mode. In addition to READLIST
and READCHAR the following Built-in Modal windows are available.

MESSAGEBOX

MESSAGEBOX

MESSAGEBOX banner body

This command will stop processing and popup a message window using banner and body.
Processing will not continue until the user clicks on the OK button. Also note the LOGO
commander is also disabled until OK is clicked.

banner:(LIST) Is used label the banner of the window.

body: (LIST) Is used to fill the message box with the given text. The box will automatically be
sized.

WINDOWS Example

Note: That for the modeless case "setup" is called AFTER the WINDOWCREATE returns. And
that for the modal case "setup" is called DURING the DIALOGCREATE and DIALOGCREATE
does not return until the window is closed.

to win
; For modeless example use this line
windowcreate "root "d1 [Draw Pictures] 0 0 480 300 setup ;Create main window
; For modal example use this line
; dialogcreate "root "d1 [Draw Pictures] 0 0 480 300 [setup] ;Create main window
end

to setup
staticcreate "d1 "st4 [Select Shape] 20 100 150 25 ;Create List box with 3 Items owned by d1
listboxcreate "d1 "l1 20 125 200 40
listboxaddstring "l1 "SQUARE
listboxaddstring "l1 "TRIANGLE
listboxaddstring "l1 "HEXAGON

staticcreate "d1 "st11 "Red 250 100 75 25 ;Label the scrollbar
scrollbarcreate "d1 "s1 250 125 25 100 [myred] ;Create scroll bar, call myred when clicked
scrollbarset "s1 1 255 125 myred ;Init

buttoncreate "d1 "b1 "END 20 235 120 25 [myend] ;Create button to call myend
buttoncreate "d1 "b2 "DRAW 340 235 120 25 [drawthing] ;Create button to call drawthing
buttoncreate "d1 "b3 "CLEAR 180 235 120 25 [cs] ;Create button to clear screen
end

; execute this routine when DRAW button pushed

to drawthing
setpencolor scrollbarget "s1 0 0 ;Ask scrollbar what to setpencolor to

; Draw appropriate shape according to the listbox

if equalp "HEXAGON listboxgetselect "l1 [repeat 6 [fd 100 rt 60]]
if equalp "SQUARE listboxgetselect "l1 [repeat 4 [fd 100 rt 90]]
if equalp "TRIANGLE listboxgetselect "l1 [repeat 3 [fd 100 rt 120]]
end

; execute this routine when END button is pushed

to myend
; For modeless example use this
windowdelete "d1

; For modal example use this
; dialogdelete "d1
end

; execute this routine when RED scroll bar is adjusted

to myred
staticupdate "st11 sentence [Red] scrollbarget "s1 ;Update static label of position
end

BITMAP FUNCTIONS

Bitmap functions allow you to manipulate sub-images within the primary image.

BITMAP COMMANDS

BITMAP COMMANDS

BITCUT
BITFIT
BITBLOCK
BITLOAD
BITSAVE
BITPASTE

BITCUT

BITCUT width height

This command will "cut" out part of the image and into the Logo's memory. Later at anytime
you can "paste" (BITPASTE) it back into the image. LOGO can only remember one thing to cut
at a time. That is, it will forget what you cut when you cut again. LOGO will cut starting at
the turtles' position with a width of the first argument and a height of the second argument.

BITFIT

BITFIT width height

This command will "fit" the currently "cut" (BITCUT) image into the specified dimensions.
Later at anytime you can "paste" (BITPASTE) it back into the image. LOGO will fit the "cut"
image to a width of the first argument and a height of the second argument. The original "cut"
image is replaced by this newly "fit" image. You can permanently "scale" your image with
bitfit. Where as zoom only views it temporarily at a different scale.

BITBLOCK

BITBLOCK width height

This command will draw an opaque rectangle of the given dimensions. The color will be the
color of SETFLOODCOLOR.

BITLOAD

BITLOAD bitmapname

This command is the same as the Bitmap Load Command from the menu. Its one input must be
a word which describes the bitmap file to load. See also BITSAVE command.

Try this:

bitload "myfile.bmp

BITSAVE

BITSAVE bitmapname

This command is the same as the Bitmap Save Command from the menu. Its one input must be
a word which decribes the bitmap file to save. See also BITLOAD command.

Try this:

bitsave "myfile.bmp

BITPASTE

BITPASTE

This command will "paste" back into the image what was "cut" (BITCUT). LOGO will always
"paste" at the location of the turtle with the turtle being the lower left corner.

Note: You can write higher order procedures such as bitcopy by building logo procedures using
the bit-primitive commands in Logo.

MULTI MEDIA

Multi Media in Logo means that you, as a logo programmer, can manipulate Multi Media
devices such as cdplayers, sound boards, and more.

MULTI MEDIA COMMANDS

MULTI MEDIA COMMANDS

MCI

MCI

MCI [mci-command-list]

The input must be a list. It may or may not output a list depending on the context. The MCI
interface is very powerful. It opens the door to letting Logo control any Windows Multi Media
device. These include Sound cards (with or without MIDI interfaces), CD-ROM players and
more.

The MCI command is designed to let YOU (the programmer) write procedures to manipulate
Multi Media devices. You can now link sounds to the steps of drawing a picture. You can
narrate your own slide show. You can even ask your user questions in your own voice.

The mci-command-list is described in a separate help file. See Help MCI Command.

Current limitations:

The MCI interface allows you to start a device and optionally "wait" for it to finish or "notify"
you when it has finished the request. The "wait" works fine, but "notify" is NOT implemented
yet.

Try this:

to soundit
print mci [open c:\windows\tada.wav type waveaudio alias wa1]
print mci [open c:\windows\ding.wav type waveaudio alias wa2]
mci [seek wa1 to start]
mci [play wa1 wait]
repeat 2~
 [~
 mci [seek wa2 to start]~
 mci [play wa2 wait]~
]
mci [close wa1]
mci [close wa2]
end

Note: That the Microsoft SPEAKER sound card emulator does NOT work with MCI.
Note: MCI is only available to Microsoft Windows 3.1 systems or Microsoft Windows 3.0 with
Multi Media extensions.

ABBREVIATIONS

This section is primaryly here for Online HELP.

ABBREVIATION LIST

ABBREVIATION LIST

+
bk
bfs
bf
bl
cs
ct
co
/
ed
=
er
erf
fd
fs
>
ht
iff
ift
lt
<
*
op
pd
pe
ppt
px
pu
pr
rc
rcs
rl
rw
rt
se
setfc
seth
setpc
setsc
st
ss
-
ts

+

This is an abbreviation for sum.

bk

This is an abbreviation for back.

bfs

This is an abbreviation for butfirsts.

bf

This is an abbreviation for butfirst.

bl

This is an abbreviation for butlast.

cs

This is an abbreviation for clearscreen.

ct

This is an abbreviation for cleartext.

co

This is an abbreviation for continue.

/

This is an abbreviation for quotient.

ed

This is an abbreviation for edit.

=

This is an abbreviation for equalp.

er

This is an abbreviation for erase.

erf

This is an abbreviation for erasefile.

fd

This is an abbreviation for forward.

fs

This is an abbreviation for fullscreen.

>

This is an abbreviation for greaterp.

ht

This is an abbreviation for hideturtle.

iff

This is an abbreviation for iffalse.

ift

This is an abbreviation for iftrue.

lt

This is an abbreviation for left.

<

This is an abbreviation for lessp.

*

This is an abbreviation for product.

op

This is an abbreviation for output.

pd

This is an abbreviation for pendown.

pe

This is an abbreviation for penerase.

ppt

This is an abbreviation for penpaint.

px

This is an abbreviation for penreverse.

pu

This is an abbreviation for penup.

pr

This is an abbreviation for print.

rc

This is an abbreviation for readchar.

rcs

This is an abbreviation for readchars.

rl

This is an abbreviation for readlist.

rw

This is an abbreviation for readword.

rt

This is an abbreviation for right.

se

This is an abbreviation for sentence.

setfc

This is an abbreviation for setfloodcolor.

seth

This is an abbreviation for setheading.

setpc

This is an abbreviation for setpencolor.

setsc

This is an abbreviation for setscreencolor.

st

This is an abbreviation for showturtle.

ss

This is an abbreviation for splitscreen.

 -

This is an abbreviation for difference.

ts

This is an abbreviation for textscreen.

END OF DOCUMENT

